Open Access
E3S Web Conf.
Volume 64, 2018
2018 3rd International Conference on Power and Renewable Energy
Article Number 06004
Number of page(s) 5
Section Photovoltaic Systems and Power Generation Technologies
Published online 27 November 2018
  1. Liu, B.-T., K.-H. Chien, and C.-C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004. 29(8): p. 1207-1217. [CrossRef] [Google Scholar]
  2. Jing, L., P. Gang, and J. Jie, Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas. Applied Energy, 2010. 87(11): p. 3355-3365. [Google Scholar]
  3. Pei, G., J. Li, and J. Ji, Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle. Applied Thermal Engineering, 2010. 30(8): p. 998-1004. [Google Scholar]
  4. Roy, J.P., M.K. Mishra, and A. Misra, Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy, 2010. 35(12): p. 5049-5062. [CrossRef] [Google Scholar]
  5. Lakew, A.A. and O. Bolland, Working fluids for low-temperature heat source. Applied Thermal Engineering, 2010. 30(10): p. 1262-1268. [Google Scholar]
  6. Baccioli, A., M. Antonelli, and U. Desideri, Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery. Applied Energy, 2017. 199: p. 69-87. [Google Scholar]
  7. Nguyen, T.Q., J.D. Slawnwhite, and K.G. Boulama, Power generation from residual industrial heat. Energy Conversion and Management, 2010. 51(11): p. 2220-2229. [Google Scholar]
  8. Bombarda, P., C.M. Invernizzi, and C. Pietra, Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied Thermal Engineering, 2010. 30(2): p. 212-219. [Google Scholar]
  9. Varma, G.V.P. and T. Srinivas, Power generation from low temperature heat recovery. Renewable and Sustainable Energy Reviews, 2017. 75: p. 402-414. [CrossRef] [Google Scholar]
  10. Ho, T., S.S. Mao, and R. Greif, Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. Energy, 2012. 42(1): p. 213-223. [CrossRef] [Google Scholar]
  11. Ho, T., S.S. Mao, and R. Greif, Increased power production through enhancements to the Organic Flash Cycle (OFC). Energy, 2012. 45(1): p. 686-695. [CrossRef] [Google Scholar]
  12. Smith, I.K., Development of the trilateral flash cycle system Part 1: fundamental consideration. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1993. 207(3): p. 179-194. [CrossRef] [Google Scholar]
  13. Smith, I., N. Stosic, and C. Aldis, Trilateral flash cycle system a high efficiency power plant for liquid resources. Proceedings World Geothermal Congress 1995, 1995: p. 2109. [Google Scholar]
  14. Fischer, J., Comparison of trilateral cycles and organic Rankine cycles. Energy, 2011. 36(10): p. 6208-6219. [CrossRef] [Google Scholar]
  15. Dincer, I. and H. Al-Muslim, Thermodynamic analysis of reheat cycle steam power plants. Fuel and Energy Abstracts, 2002. 43(4): p. 264. [CrossRef] [Google Scholar]
  16. Chen, H., et al., A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy, 2011. 36(1): p. 549-555. [CrossRef] [Google Scholar]
  17. Sahin, A.Z., et al., Special Issue: Thermodynamic Optimization, Exergy Analysis, and Constructal Design. Arabian Journal for Science and Engineering, 2013. 38(2): p. 219-219. [CrossRef] [Google Scholar]
  18. Invernizzi, C., P. Iora, and P. Silva, Bottoming micro-Rankine cycles for micro-gas turbines. Applied Thermal Engineering, 2007. 27(1): p. 100-110. [Google Scholar]
  19. Baral, S. and K.C. Kim, Thermodynamic Modeling of the Solar Organic Rankine Cycle with Selected Organic Working Fluids for Cogeneration. Distributed Generation & Alternative Energy Journal, 2014. 29(3): p. 7-34. [CrossRef] [Google Scholar]
  20. Smith, I.K. and R.P.M. da Silva, Development Of The Trilateral Flash Cycle System Part 2: Increasing Power Output With Working Fluid Mixtures. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 1990-1996 1994. 208: p. 135-144. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.