Open Access
E3S Web Conf.
Volume 65, 2018
International Conference on Civil and Environmental Engineering (ICCEE 2018)
Article Number 02010
Number of page(s) 10
Section Construction & Building Materials
Published online 26 November 2018
  1. A. Neville. “Properties of concrete”. 5th ed. Harlow [etc.]: Pearson Education (2012) [Google Scholar]
  2. K. Ramamurthy, E. Kunhanandan Nambiar, G. Indu Siva Ranjani. A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396 (2009) [Google Scholar]
  3. M. Kamanli, M.Y. Kaltakci, F. Bahadır, F. balık, H. Korkmaz, D. M. Sami, M. T. Cogurcu. Predicting the flexural behaviour of reinforced concrete and lightweight concrete beams by ANN. Indian J. of Engineering and Materials Sciences, 19, 87-94 (2012) [Google Scholar]
  4. I. Abdulrahman, H. Tijani, B. Mohammed, H. Saidu, H. Yusuf, M. Ndejiko Jibrin, S. Mohammed. From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. J. of Materials, 2014, 1-6 (2014) [CrossRef] [Google Scholar]
  5. T. A. Seadi, J. B. Holm-Nielsen. “Agricultural wastes,” in Waste Management Series, I. Twardowska, J. L. William, Eds., Elsevier (2004) [Google Scholar]
  6. E. C. Li-Chan, H. O. Kim. “Structure and chemical composition of eggs,” Egg Bioscience and Biotechnology (2008) [Google Scholar]
  7. E. M. Rivera, M. Araiza, W. Brostow, V. M. Castaño, J. R. Díaz-Estrada, R. Hernández, J. R. Rodríguez. “Synthesis of hydroxyapatite from eggshells,” Materials Letters, 41(3), 128-134 (1999) [CrossRef] [Google Scholar]
  8. Malaysians consume 20 million eggs daily - Community | The Star Online. [online] Available at: [Accessed 8 May 2018]. [Google Scholar]
  9. [online] Available at: [Accessed 9 May 2018]. [Google Scholar]
  10. S. John-Jaja, U. Udoh, S. Nwokolo. Repeatability estimates of egg weight and egg-shell weight under various production periods for Bovan Nera Black laying chicken. Beni-Suef University J. of Basic and Applied Sciences, 5(4), 389-394 (2016) [CrossRef] [Google Scholar]
  11. J. Péra, S. Husson, B. Guilhot. Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 21(2), 99-105 (1999) [Google Scholar]
  12. T. Matschei, B. Lothenbach, F. P. Glasser. The role of calcium carbonate in cement hydration. Cement and Concrete Research, 37, 551-558 (2007) [CrossRef] [Google Scholar]
  13. A. Yerramala. Properties of concrete with eggshell powder as cement replacement. The Indian Concrete J., 94-102 (2014) [Google Scholar]
  14. D. Gowsika, S. kokila, K. Sargunan. Experimental Investigation of Egg Shell Powder as Partial Replacement with Cement in Concrete. International J. of Engineering Trends and Technology, 14(1), 65-68 (2014) [CrossRef] [Google Scholar]
  15. B. Bakhtyar, T. Kacemi, M. Nawaz. A review on carbon emissions in Malaysian cement industry. International J. of Energy Economics and Policy. 7(3), 282-286 (2017) [Google Scholar]
  16. N. Madlool, R. Saidur, M. Hossain, N. Rahim. A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews, 15(4), 2042-2060 (2011) [Google Scholar]
  17. E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori. Global strategies and potentials to curb CO2 emissions in cement industry. J. of Cleaner Production, 51, 142-161 (2013) [CrossRef] [Google Scholar]
  18. Q. Zhu. CO2 Abatement in the Cement Industry. IEA Clean Coal Centre. Research Report CCC/184. (2011) [Google Scholar]
  19. Cembureau - The European Cement Association. “Best Available Techniques” for the Cement Industry. A contribution from the European Cement Industry to the exchange of information and preparation of the IPPC BAT Reference Document for the cement industry, 41-42 (1999) [Google Scholar]
  20. American Society for Testing and Materials, 2005. ASTM C 150 - 05: Standard Specification for Portland Cement. Conshohocken, Pennsylvania, United States: ASTM International. [Google Scholar]
  21. Standards Malaysia, 2014. MS EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements (First revision). Malaysia: Department of Standards Malaysia. [Google Scholar]
  22. American Society for Testing and Materials, 2007. ASTM C 192 - 07: Standard Practise for Making and Curing Concrete Test Specimen in the Laboratory. Conshohocken, Pennsylvania, United States: ASTM International. [Google Scholar]
  23. American Society for Testing and Materials, 2006. ASTM C 1602 - 06: Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. Conshohocken, Pennsylvania, United States: ASTM International. [Google Scholar]
  24. D. Aldridge, T. Ansell. Foamed concrete: production and equipment design, properties, applications, and potential. In: Proc. of one day seminar on foamed concrete: properties, applications, and latest technological developments, Loughborough University, Loughborough, UK, (2001) [Google Scholar]
  25. American Society for Testing and Materials, 2005. ASTM C 1611 - 05: Standard Test Method for Slump Flow of Self-Consolidating Concrete. Conshohocken, Pennsylvania, United States: ASTM International. [Google Scholar]
  26. British Standards Institution, 2002. BS EN 12390 - 3: Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens. London: British Standards Institution. [Google Scholar]
  27. British Standards Institution, 2000. BS EN 12390 - 5: Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens. London: British Standards Institution. [Google Scholar]
  28. British Standards Institution, 1983. BS 1881 - 122: Testing concrete - Part 122: Method for determination of water absorption. London: British Standards Institution. [Google Scholar]
  29. American Society for Testing and Materials, 2004. ASTM C 1585 - 04: Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. Conshohocken, Pennsylvania, United States: ASTM International. [Google Scholar]
  30. S. Lim, C. Tan, O. Lim, Y. Lee. Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Construction and Building Materials, 46, 39-47 (2013) [CrossRef] [Google Scholar]
  31. Malaysian Standard, 1972. MS 76: 1972, Specification for bricks and blocks of fired brickearth, clay or shale - part 2: Metric units. Malaysia: Standard & Industrial Research Institute of Malaysia. [Google Scholar]
  32. J. Pitroda, F.S. Umrigar. Evaluation of sorptivity and water absorption of concrete with partial replacement of cement by thermal industry waste (Fly Ash). International Journal of Engineering and Innovative Technology, 2(7), 245-249 (2013) [Google Scholar]
  33. H.Y. Tiong, S.K. Lim, J.H. Lim. Strengths and sorptivity of lightweight foamed concrete with crushed steel slag. Journal of Built Environment, Technology, and Engineering, 3, 37-48 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.