Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02001
Number of page(s) 5
Section Bioenergy
Published online 26 November 2018
  1. S. Ghanimeh, M. El Fadel, P. Saikaly, Bioresource technology mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology. 117, 63–71 (2012) [CrossRef] [PubMed] [Google Scholar]
  2. Q. Song, J. Li, X. Zeng, Minimizing the increasing solid waste through zero waste strategy. Journal of Cleaner Production. 104, 199–210 (2015) [CrossRef] [Google Scholar]
  3. U. Nguyen Ngoc, H. Schnitzer, Sustainable solutions for solid waste management in Southeast Asian Countries. Waste Management. 29, 1982–1995 (2009) [CrossRef] [Google Scholar]
  4. X. Lu, X. Zhai, M. Huang, Characterization of the constitutive behaviour of municipal solid waste considering particle compressibility. Waste Management. 69, 3–12 (2017). [CrossRef] [Google Scholar]
  5. S. Norkhadijah Syed Ismail, L. Abd Manaf, The challenge of future landfill: A case study of Malaysia. Toxicology and Environmental Health Science. 5, 86–96 (2013) [CrossRef] [Google Scholar]
  6. Daniel H, Perinaz B.T, A global review of solid waste management 15th ed (World Bank Report, Washington, 2012) [Google Scholar]
  7. Kristanto G A, Gusniani I, Ratna A, The performance of municipal solid waste recycling program in Depok, Indonesia. International Journal of Technology. 2, 264–272 (2015) [Google Scholar]
  8. C. Ryu, Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea. Journal of the Air & Waste Management Association. 2247, 176–183 (2010) [CrossRef] [Google Scholar]
  9. Yuliansyah A T, Prasetya A, Ramadhan M A A, Laksono R, Pyrolysis of plastic waste to produce pyrolytic oil as an alternative fuel. International Journal of Technology. 7, 1076–1083 (2015) [CrossRef] [Google Scholar]
  10. D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, S. Prakash, High temperature corrosion behaviour of super alloys under actual waste incinerator environment. Engineering Failure Analysis. 63, 160–171 (2016) [CrossRef] [Google Scholar]
  11. F.A.M. Lino, K.A.R. Ismail, Incineration and recycling for MSW treatment: Case study of Campinas, Brazil. Sustainable Cities and Society. 35, 752–757 (2017) [CrossRef] [Google Scholar]
  12. J.R. Hart, Transient puffs of trace organic emissions from a batch-fed waste propellant incinerator. Chemosphere. 42, 559–569 (2001) [CrossRef] [PubMed] [Google Scholar]
  13. L. Wang, E. Barta-Rajnai, K. Hu, C. Higashi, O. Skreiberg, M. Gronli, Z. Czegeny, E. Jakab, V. Myrvagnes, G. Varhegyi, M.J. AntalJr, Biomass charcoal properties changes during storage. Energy Procedia. 105, 830–835 (2017) [CrossRef] [Google Scholar]
  14. Pradipta A.N.G, Design and performance test of incinerator batch type for urban areas with the addition of water heater (Institut Pertanian Bogor, 2011) [Google Scholar]
  15. Pitchel J, Waste management municipal, hazardous and industrial (CRC Press, New York, 2005) [Google Scholar]
  16. Lienhard J, A heat transfer textbook 3rd ed (Phlogiston Press, Massachusetts, 2002) [Google Scholar]
  17. A.A. Zabaniotou, G. Stavropoulos, Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis. 70, 711–722 (2003) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.