Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02030
Number of page(s) 7
Section Bioenergy
Published online 26 November 2018
  1. Q. Lu, W. Li, X. Zhu. Overview of Fuel Properties of Biomass Fast Pyrolysis Oils. Energy Conv. & Man. 50, 1377 (2009) [Google Scholar]
  2. Y. Liu, R. Sotelo-Boyas, K. Murata, T. Minowa, K. Sakanishi. Hydrotreatment of Vegetable Oils to Produce Bio-hydrogenated Diesel and Liquefied Petroleum Gas Fuels over Catalysts Containing Sulfided Ni-Mo and Solid Acids. Energy & Fuels. 25, 4677 (2011) [Google Scholar]
  3. D. Supramono, Jonathan, Haqqyana, Setiadi, M. Nasikin. Improving Bio-oil Quality through Copyrolysis of Corn Cobs and Polypropylene in a Stirred Tank Reactor. International Journal of Technology (2016) 8, 1381 (2016) [CrossRef] [Google Scholar]
  4. D. Supramono, Julianto, Haqqyana, Setiadi, M. Nasikin. Phase Separation of Bio-oil Produced by Co-pyrolysis of Corn Cobs and Polypropylene. IOP Conf. Series: Earth and Environmental Science 93 (2017) 012072 [CrossRef] [Google Scholar]
  5. X. Li, X. Luo, Y. Jin, J. Li, H. Zhang, A. Zhang, J. Xie. Heterogeneous Sulphur-Free Hydrodeoxygenation Catalysts for Selectively Upgrading the Renewable Bio-oils into Second Generation Biofuels. Ren. & Sust. En. (to be published) [Google Scholar]
  6. D. Kubička, L. Kaluža. Deoxygenation of Vegetable Oils under Sulfided Ni, Mo and NiMo Catalysts. Appl. Catal. A-Gen. 372, 199–208 (2010). [CrossRef] [Google Scholar]
  7. B.H. Susanto, M.B. Prakasa, M.H. Shahab. Preparation and Characterization of NiMo/C using Rapid Heating and Cooling Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum Inophyllum Oil). International Series of Interdisciplinary Science and Technology 1, 43 (2017) [Google Scholar]
  8. R. Maggi, B. Delmon. A Review of Catalytic Hydrotreating Processes for the Upgrading of Liquids Produced by Fast Pyrolysis. Hydro. Treat. and Hydro Crack. Oil Fract. 1, 99–112 (1997) [Google Scholar]
  9. V.I. Sharypov, N.G. Beregovtsova, B.N. Kuznetsov, L. Membrado, V.L. Cebolla, N. Marin, J.V. Weber. Co-pyrolysis of Wood Biomass and Synthetic Polymers Mixtures. Part III: Characterisation of Heavy Products. J. Anal. Appl. Pyrolysis. 67, 333 (2003) [Google Scholar]
  10. S. Nanda, P. Mohanty, J.A. Kozinski, A.K. Dalai. Physico-Chemical Properties of Bio-oils from Pyrolysis of Lignocellulosic Biomass with High and Slow Heating Rate. Energy and Env. Res. 4, 27 (2014) [CrossRef] [Google Scholar]
  11. B. Kunwar, S.D. Deilami, L.E. Macaskie, J. Wood, P. Biller, B.K. Sharma. Nanoparticles of Pd Supported on Bacterial Biomass for Hydroprocessing Crude Bio-oil. Fuel 209, 450 (2017) [CrossRef] [Google Scholar]
  12. F. Nerozzi. Heterogeneous Catalytic Hydrogenation. Platinum Metals Rev. 56, 238 (2012) [CrossRef] [Google Scholar]
  13. R. Coulson, J.F. Richardson. Chemical Engineering Vol. 1: Fluid Flow, Heat and Mass Transfer. Butterworth & Heinemann (1993) [Google Scholar]
  14. A. Busciglio, F. Grisafi, F. Ippolito, F. Scargiali, A. Brucato, Mixing Time in Unbaffled Stirred Tanks. 14th European Conference on Mixing, Warszawa (2012). [Google Scholar]
  15. M. Hudlicky. Reductions in Organic Chemistry, 2nd edition. American Chemical Society, p. 429 (1996) [Google Scholar]
  16. R. Achouri, I. Mokni, H. Mhiri, P. Bournot, A 3D CFD Simulation of a Self-inducing Pitched Blade Turbine Downflow. Energy Conversion and Management 64, 633–641 (2012). [Google Scholar]
  17. B.B. Amira, Z. Driss, M.S. Abid, PIV Study of a 45° Piched Blade Turbine: Up and Down-Pumping Direction Effect on the Hydrodynamic Structure in a Stirred Tank. International Journal of Mechanics and Applications 3(4), 88–97 (2013). [Google Scholar]
  18. S.A. Channiwala, P.P. Parikh. A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel. 81, 1051–1053 (2002). [CrossRef] [Google Scholar]
  19. G. Knothe, J.V. Gerpen, J. Krahl, L.P. Ramos. The Biodiesel Handbook. Blucher, Sao Paulo, pp. 89–90 (2006) [Google Scholar]
  20. R. Khare, J. de Pablo. Rheological, Thermodynamic, and Structural Studies of Linear and Branched Alkanes under Shear. J. Chem. Phys., 107, 6956 (1997) [Google Scholar]
  21. L. Ingram, D. Mohan, M. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell, C.U. PittmanJr. Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils. Energy & Fuels 22, 614–625 (2008). [CrossRef] [Google Scholar]
  22. G. Yan, X. Jing, H. Wen, S. Xiang. Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semibatch Reactor under Atmospheric Pressure. Energy & Fuels, 29, 2289 (2015). [CrossRef] [Google Scholar]
  23. D.V. Naik, V. Kumar., B. Prasad, M.K. Poddar, B. Behera, R. Bal, O.P. Khatri, D.K. Adhikari, M.O. Garg. Overview of Fuel Properties of Biomass Fast Pyrolysis Oils. Energy Conversion and Management, 5, 389 (2015). [Google Scholar]
  24. A.G.A. Jameel, N. Naser, A. Emwas, S. Dooley, S.M. Sarathy. Predicting Fuel Ignition Quality using 1HNMR Spectroscopy and Multiple Linear Regression. Energy & Fuels, 30, 11 (2016) [Google Scholar]
  25. R. Vinu, L.J. Broadbelt, Unraveling Reaction Pathways and Specifying Reaction Kinetics for Complex Systems. Annu. Rev. Chem. Biomol. Eng., 3, 29–54 (2012) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.