Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02043
Number of page(s) 10
Section Bioenergy
Published online 26 November 2018
  1. E. Hutrindo, Modul Pengenalan Bioenergi, Kesatu. East Jakarta: Pusdiklat Ketenagalistrikan, Energi Baru, Terbarukan, dan Konservasi Energi, (2015). [Google Scholar]
  2. K. Abdullah, “Biomass Energy Potentials And Utilization In Indonesia,“Dept. of Agri.Eng. IPB and IRES, (2006). [Accessed 20-May-2018]. [Google Scholar]
  3. P. Basu, Biomass Gasification and Pyrolysis. Burlington, Massachusets: Elsevier, (2010). [Google Scholar]
  4. H. Hermansyah, A. P. Wisman, D. Firdaus, R. Arbianti, T. S. Utami, and A. Kurnia, “Effect of aeration and nutrients on Saccharomyces cerevisiae cultivation using lignocellulosic hydrolysate from Empty Fruit Bunch,” Int. J. Technol., vol. 6, no. 7, pp. 1110–1118, (2015). [CrossRef] [Google Scholar]
  5. T. Wang, Y. Li, L. Ma, and C. Wu, “Biomass to dimethyl ether by gasification/synthesis technology-an alternative biofuel production route,” Front. Energy Power Eng. China, vol. 5, no. 3, pp. 330–339, (2011). [Google Scholar]
  6. M. Salomon, M. F. Gómez, C. Erlich, and A. Martin, “Pelletization: An alternative for polygeneration in the palm oil industry,” Biomass Convers. Biorefinery, vol. 3, no. 3, pp. 213–229, (2013). [Google Scholar]
  7. M. A. Sukiran, N. O. R. Kartini, A. B. U. Bakar, and C. M. E. E. Chin, “Optimization of Pyrolysis of Oil Palm Empty Fruit Bunches Optimization of Pyrolysis of Oil Palm Empty Fruit Bunches,” Am. J. Appl. Sci., vol. 21, no. 6, pp. 653–658, (2009). [Google Scholar]
  8. M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, and M. S. Mohamad Amran, “Gasification of oil palm empty fruit bunches: A characterization and kinetic study,” Bioresour. Technol., vol. 110, pp. 628–636, (2012). [Google Scholar]
  9. Y. S. Pradana and A. Budiman, “Bio-syngas derived from Indonesian oil palm empty fruit bunch (EFB) using middle-scale gasification,” J. Eng. Sci. Technol., vol. 10, no. Spec.issue8, pp. 1–8, (2015). [Google Scholar]
  10. T. Ogi, M. Nakanishi, Y. Fukuda, and K. Matsumoto, “Gasification of oil palm residues (empty fruit bunch) in an entrained-flow gasifier,” Fuel, vol. 104, pp. 28–35, (2013). [CrossRef] [Google Scholar]
  11. A. Inayat, C. Ghenai, M. Naqvi, M. Ammar, M. Ayoub, and M. N. B. Hussin, “Parametric Study for Production of Dimethyl Ether (DME) As a Fuel from Palm Wastes,” Energy Proc., vol. 105, pp. 1242–1249, (2017). [Google Scholar]
  12. M. Bassyouni et al., “Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS,” Energy Convers. Manag., vol. 88, pp. 693–699, (2014). [Google Scholar]
  13. B. Chutichai, Y. Patcharavorachot, S. Assabumrungrat, and A. Arpornwichanop, “Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production,” Energy, vol. 82, pp. 406–413, (2015). [CrossRef] [Google Scholar]
  14. R. Nayak and R. Mewada, “Simulation of Coal Gasification Process using ASPEN PLUS”, in Int. Conf. Curr. trends Technol., (2011).Ahmedabad, Pakistan[Online].Available: [Accessed: 10 May2018]. [Google Scholar]
  15. M. S. Eikeland, R. K. Thapa, and B. M. Halvorsen, “Aspen Plus Simulation of Biomass Gasification with Known Reaction Kinetic,” in Proceeding of 56thSIMS,(2015). Linkoping, Sweden[Online].Available: [Accessed:10 May 2018]. [Google Scholar]
  16. K. A. Kishore and K. A. V Ramanjaneyulu, “Simulation of Biomass Gasification in Fluidized Bed Using Aspen Plus,” in 6th Int. Conf. Chem. Biol. Environ. Sci., (2015). Dubai, UAE [Online]. Available: [Accessed: 10 May 2018]. [Google Scholar]
  17. W. Doherty, A. Reynolds, and D. Kennedy, “Simulation of a Circulating Fluidised Bed Biomass Gasifier using ASPEN Plus: a Performance Analysis,” in 21st Int. Conf. on Eff., Cost, Opt., Sim. and Env. Impact of Ener. Syst., (2008).Krakow, Poland[Online].Available: [Accessed: 11 May 2018] [Google Scholar]
  18. M. Siedlecki, W. de Jong, and A. H. M. Verkooijen, “Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels-a review,” Energies, vol. 4, no. 3, pp. 389–434, (2011). [CrossRef] [Google Scholar]
  19. P. Lahijani, G. D. Najafpour, Z. Alimuddin, and M. Mohammadi, “Air Gasification of Palm Empty Fruit Bunch in a Fluidized Bed Gasifier Using Various Bed Materials,” in World Renew. Energy Congr., (2011). Linkoping, Sweden [Online].Available: [Accessed:11 May 2018]. [Google Scholar]
  20. W. Doherty, A. Reynolds, and D. Kennedy, “The Effect of Air Preheating in a Biomass CFB Gasifier using ASPEN Plus Simulation,“Biomass Bioenergy, vol. 33, no.9, pp. 1158–1167(2009). [CrossRef] [Google Scholar]
  21. R. Fatoni, S. Gajjar, S. Gupta, S. Handa, and A. Elkamel, “Modeling Biomass Gasification in a Fluidized Bed Reactor”, in Int. Conf. Ind. Eng. Oper. Manag., (2014). Bali, Indonesia [Online].Available: [Accessed:13 May 2018]. [Google Scholar]
  22. H. Florence and A. Bour, Modelling and Optimization of a Process from Biomass to Liquid Fuels via Fischer-Tropsch Synthesis. Norway: NTNU,(2016). [Google Scholar]
  23. “HYSYS Design Tutorial For CHEE 332” Queen 'sUniversity Department of Chemical Engineering.” pp. 1–36, (2013). [Google Scholar]
  24. Q. Miao, J. Zhu, S. Barghi, C. Wu, X. Yin, and Z. Zhou, “Modeling biomass gasification in circulating fluidized beds,” Renew. Energy, vol. 50, pp. 655–661, (2013). [CrossRef] [Google Scholar]
  25. B. Buragohain, P. Mahanta, and V. S. Moholkar, “First principles design of a circulating fluidized bed (CFB) biomass gasifier.,” in New Tech for Rural Dev. Hav. Potential for Commerc. New Delhi: Allied Publisher,(2009). [Google Scholar]
  26. J. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers. Manag., vol. 153, no. August, pp. 641–648, (2017). [CrossRef] [Google Scholar]
  27. A. Kumar, D. D. Jones, and M. A. Hanna, “Thermochemical biomass gasification: A review of the current status of the technology,” Energies, vol. 2, no. 3, pp. 556–581, (2009). [CrossRef] [Google Scholar]
  28. D. Toporov and R. Abraham, “Gasification of low-rank coal in the High-Temperature Winkler (HTW) process,” J. South. African Inst. Min. Metall., vol. 115, no. 7, pp. 589–597, (2015). [CrossRef] [Google Scholar]
  29. “Phyllis2 - coal, lignite (#2847).” [Online]. Available: [Accessed: 20-May-2018]. [Google Scholar]
  30. N. Clausen, L. R., Elmegaard, B., & Houbak. Design of novel DME/methanol synthesis plants based on gasification of biomass.Denmark:DTU, (2011). [Google Scholar]
  31. J. E. Preciado, J. J. Ortiz-Martinez, J. C. Gonzalez-Rivera, R. Sierra-Ramirez, and G. Gordillo, “Simulation of synthesis gas production from steam oxygen gasification of colombian coal using aspen plus,” Energies, vol. 5, no. 12, pp. 4924–4940, (2012). [CrossRef] [Google Scholar]
  32. A. M. Parvez, T. Wu, S. Li, N. Miles, and I. M. Mujtaba, “Bio-DME production based on conventional and CO2 -enhanced gasification of biomass: A comparative study on exergy and environmental impacts,” Biomass Bioenergy, vol. 110, no. September 2017, pp. 105–113, (2018). [CrossRef] [Google Scholar]
  33. F. Trippe, et al., “Comprehensive technoeconomic assessment of DME synthesis and Fischer-Tropsch synthesis as alternative process steps within biomass-to-liquid production,” Fuel Process. Technol., vol. 106, pp. 577–586, (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.