Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03003
Number of page(s) 5
Section Multifunctional and Advanced Materials
DOI https://doi.org/10.1051/e3sconf/20186703003
Published online 26 November 2018
  1. WHO. Global Report on Diabetes, WHO. France: MEO Design & Communication, meomeo.ch (2016) [Google Scholar]
  2. Guntavid, J.P. Some Preliminary Observations of Sabah's Traditional Medicinal Plants. www.borneofocus.com (2001) [Google Scholar]
  3. Hariana, A. Tumbuhan Obat dan Khasiatnya Seri 2. Jakarta: Penebar Swadaya (2008) [Google Scholar]
  4. Lans, Cheryl A. Ethnomedicines Used in Trinidad and Tobago for Urinary Problems and Diabetes Mellitus, Journal of Ethnobiology and Ethnomedicine, 2, pp. 45 (2006) [Google Scholar]
  5. Comerford, S.C. Medicinal Plants of Two Mayan Healers from San Andres, Peten, Guatemala, Economic Botany, 50(3), pp. 327–336 (1996) [Google Scholar]
  6. Sunilson et al. Analgesic and Antipyretic Effects of Sansevieria trifasciata Leaves. Afr.J.Traditional, Complementary and Alternative Medicines 6 (4), pp. 529–533 (2009) [Google Scholar]
  7. Lombogia B., Budiarso F., & Bodhi W. Uji daya hambat ekstrak daun lidah mertua (Sansevieria trifasciata folium) terhadap pertumbuhan bakteri Escherichia coli dan Streptococcus sp. Jurnal e-Biomedik (EBM), Volume 4, Nomor 1, January-Juni. Medan: Fakultas Kedokteran, Universitas Sam Ratulangi Manado (2016) [Google Scholar]
  8. Mahardika R. A. D., Hidayat N., & Nurika I. Ekstraksi Antioksidan dari Lidah Mertua (Sansevieria trifasciata Prain) Menggunakan Metode Microwave-Assisted Extraction (MAE) dan Pulsed Electric Field. (2013) [Google Scholar]
  9. Qomariyah, N. Antidiabetic Effects of a Decoction of Leaves of Sansevieria trifasciata in Alloxan-Induced Diabetic White Rats (Rattus norvegicus L.). Bandung: LPPM ITB (2012) [Google Scholar]
  10. Wijono, S. Isolasi dan identifikasi flavonoid pada daun katuk (Sauropus androgynus (L.) Merr). Makara Sains 7 (2), pp. 52–66 (2003). [Google Scholar]
  11. Gamse T. Liquid-liquid Extraction and Solid-Liquid Extraction. New York (US): Graz Pr (2002) [Google Scholar]
  12. Suryani NC, Permana DGM, Jambe AAGNA. Pengaruh Jenis Pelarut terhadap Kandungan Total Flavonoid dan Aktivitas Antioksidan Ekstrak Daun Matoa (Pometia pinnata). Bali: Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana (2014) [Google Scholar]
  13. Sancheti S, Seo SY. Chaenomeles sinensis: a potent α-and β- glucosidase inhibitor. American Journal of Pharmocology and Toxicology 4(1), pp. 8–11 (2009) [CrossRef] [Google Scholar]
  14. Yulianti. Uji Aktivitas Penghambatan Enzim α-Glukosidase Ekstrak Metanol 80% Daun Eceng Gondok (Eichhornia crassipes Solms.) Secara In Vitro. Jakarta: Fakultas Farmasi Universitas 17 Agustus 1945 (2014) [Google Scholar]
  15. Matthew, K.O., Olugbenga, O.S., Olajide, A.O. & Doyin, A.F. The Effect of Bridelia ferruginea and Senna alata on Plasma Glucose Concentration in Normoglycemic and Glucose-Induced Hyperglycemic Rats, Ethnobotanical Leaflets. 10, pp. 209–218 (2006) [Google Scholar]
  16. Peyrat-Maillard, M. N.; Cuvelier, M. E.; Berset, C. Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. Journal of the American Oil Chemists' Society. 80 (10): 1007–1012. doi:10.1007/s11746-003-0812-z (2003) [CrossRef] [Google Scholar]
  17. Vats S, Kamal R. In vivo and in vitro evaluation of sterols from Gymnema Sylvestre R. Br. Pak J Biol Sci 2013;16:1771–5 (2013) [CrossRef] [Google Scholar]
  18. Pascual, Gloria. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. doi:10.1038/nature20791 (2016) [Google Scholar]
  19. Wang Z, Jiang H, Xia YG, Yang Y, Kuang HX. α-Glucosidase inhibitory constituents from Acanthopanax senticocus harm leaves. Molecules 17:6269–6276. doi: 10.3390/molecules17066269 (2012) [CrossRef] [PubMed] [Google Scholar]
  20. Elmazar, Mohamed M.; El-Abhar, Hanan S.; Schaalan, Mona F.; and Farag, Nahla A. Phytol/Phytanic acid, and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. World Biomedical Frontiers, ISSN: 2328-0166 (2013) [Google Scholar]
  21. Ragasa, Consolacion Y.; Lim, Kosta Fremmielle; Shen, Chien-Chang; and Raga, Dennis D. Hypoglycemic Potential of Triterpenes from Alstonia scholaris. Pharmaceutical Chemistry Journal, Russian Original Vol. 47, No. 1 (2013) [Google Scholar]
  22. Choe, Eunok; Min, David B. Mechanisms of Antioxidants in the Oxidation of Foods. Comprehensive Reviews in Food Science and Food Safety. 8(4), pp. 345–358. doi:10.1111/j.1541-4337.2009.00085.x (2009) [CrossRef] [Google Scholar]
  23. Monfalouti HE, Guillaume D, Denhez C, Charrouf Z. Therapeutic potential of argan oil: A review. J Pharm Pharmacol 2010;62:1669–75 (2010) [CrossRef] [PubMed] [Google Scholar]
  24. Nigel, C Veitch. Isoflavonoids of the Leguminosae. Nat. Prod. Rep, 2013, 30, 988 (RSC Publishing). doi:10.1039/c3np70024k (2013) [CrossRef] [PubMed] [Google Scholar]
  25. Aldred, Katie J.; Kerns, Robert J.; and Osheroff, Neil. Mechanism of Quinolone Action and Resistance. Biochemistry. 2014 Mar 18, 53 (10): 1565–1574. doi: 10.1021/bi5000564 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.