Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03023
Number of page(s) 7
Section Multifunctional and Advanced Materials
DOI https://doi.org/10.1051/e3sconf/20186703023
Published online 26 November 2018
  1. The Concrete Corundum. (2008). Construction, [online] pp.62–64. Available at: http://www.rsc.org/images/Construction_tcm18-114530.pdf [Google Scholar]
  2. ASTM C618-17, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2017, www.astm.org [Google Scholar]
  3. El-Diadamony, H., Amer, A., Sokkary, T., & El-Hoseny, S. (2016). Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC Journal. http://dx.doi.org/10.1016/j.hbrcj.2015.05.005 [Google Scholar]
  4. Güneyisi, E., Gesoǧlu, M., & Mermerdaş, K. (2007). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials And Structures, 41(5), 937–949. http://dx.doi.org/10.1617/s11527-007-9296-z [CrossRef] [Google Scholar]
  5. Dembovska, L., Bajare, D., Pundiene, I., & Vitola, L. (2017). Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete. Procedia Engineering, 172, 202–210. http://dx.doi.org/10.1016/j.proeng.2017.02.050 [CrossRef] [Google Scholar]
  6. Poon, C., Lam, L., Kou, S., Wong, Y., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement And Concrete Research, 31(9), 1301–1306. http://dx.doi.org/10.1016/s0008-8846(01)00581-6 [CrossRef] [Google Scholar]
  7. Kim, H., Lee, S., & Moon, H. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin. Construction And Building Materials, 21(6), 1229–1237. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.007 [CrossRef] [Google Scholar]
  8. Wild, S., Khatib, J., & Jones, A. (1996). Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement And Concrete Research, 26(10), 1537–1544. http://dx.doi.org/10.1016/0008-8846(96)00148-2 [CrossRef] [Google Scholar]
  9. Justice J. (2005). Evaluation of Metakaolin for use as supplementary cementitious materials. Georgia Institute of Technology. [Google Scholar]
  10. Kementrian Energi dan Sumber Daya Mineral. (2016). Executive Summary Pemutakhiran Data dan Neraca Sumber Daya Mineral Status 2016. Badan Geologi ESDM. [Google Scholar]
  11. Cyr, M., Trinh, M., Husson, B., & Casaux-Ginestet, G. (2014). Effect of cement type on metakaolin efficiency. Cement And Concrete Research, 64, 63–72. doi: 10.1016/j.cemconres.2014.06.007 [CrossRef] [Google Scholar]
  12. Manaf, A., & Indrawati, V. (2011). Portland-Blended Cement with Reduced CO2using Trass Pozzolan. Journal Of The Korean Chemical Society, 55(3), 490–494. doi: 10.5012/jkcs.2011.55.3.490 [CrossRef] [Google Scholar]
  13. Bentz, D., Barrett, T., De la Varga, I., & Weiss, W. (2012). Relating Compressive Strength to Heat Release in Mortars. Advances In Civil Engineering Materials, 1(1), 20120002. doi: 10.1520/acem20120002 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.