Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03032
Number of page(s) 8
Section Multifunctional and Advanced Materials
DOI https://doi.org/10.1051/e3sconf/20186703032
Published online 26 November 2018
  1. Ali, A.M.M., Yahya., M.Z.A., Bahron, H., Subban, R.H.Y., Harun, M.K., Atan, I., 2007. Impedance Studies on Plasticized PMMA-LiX [X: CF3SO3-, N(CF3SO2)2-] Polymer Electrolytes. Materials Letters, Volume 61(10), pp.2026–2029 [Google Scholar]
  2. Arof, A.K., Aziz, M.F., Noor, M.M., Careem, M.A., Bandara, L.R.A.K., Thotawatthage, C.A., Dissanayake, M.A.K.L., 2014. Efficiency Enhancement by Mixed Cation Effect in Dye-Sensitized Solar Cells with a PvDF based Gel Polymer Electrolyte. International Journal of Hydrogen Energy, Volume 39(6), pp. 2929–2935 [Google Scholar]
  3. Cznotka, E., Jeschke, S., Grünebaum, M., & Wiemhöfer, H.-D., 2016. Highly-Fluorous Pyrazolide-based Lithium Salt in PVDF-HFP as Solid Polymer Electrolyte. Solid State Ionics, Volume 292, pp.45–51 [Google Scholar]
  4. Dissanayake, M.A.K.L., Thotawatthage, C.A., Senadeera, G.K.R., Bandara, T.M.W.J., Jayasundera, W.J.M.J.S.R., Mellander, B.E., 2012. Efficiency Enhancement by Mixed Cation Effect in Dye-Sensitized Solar Cells with PAN based Gel Polymer Electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, Volume 246, pp.29–35 [CrossRef] [Google Scholar]
  5. El-Nahass, M.M., Atta, A.A., El-Zaidia, E.F.M., Farag, A.A.M., Ammar, A.H., 2014. Electrical Conductivity and Dielectric Measurements of CoMTPP. Materials Chemistry and Physics, Volume 143(2), pp.490–494. [Google Scholar]
  6. Elliott, S.R., 1987. A.C. Conduction In Amorphous Chalcogenide and Pnictide Semiconductors. Advances in Physics, Volume 36, pp. 135–217 [Google Scholar]
  7. Funke, K., 1997. Ion Transport in Fast Ion Conductors - Spectra And Models. Solid State Ionics, Volume 94(1), pp. 27–33 [Google Scholar]
  8. Funke, K., Wilmer, D., 2011. Concept of Mismatch and Relaxation Derived from Conductivity Spectra of Solid Electrolytes. MRS Proceedings, Volume 548, pp. 403–414 [CrossRef] [Google Scholar]
  9. Gregor, H.P., 1968. Ion-Exchange Membranes -Correlation Between Structure and Function Pure and Applied Chemistry, Volume 16, pp. 329–350 [CrossRef] [Google Scholar]
  10. Hassan, H.C., Abidin, Z.H.Z., Careem, M.A., Arof, A.K., 2014. Chlorophyll as Sensitizer In I-/I3--Based Solar Cells with Quasi-Solid-State Electrolytes. High Performance Polymers, Volume 26(6), pp.647–652 [CrossRef] [Google Scholar]
  11. Jamil, A., Afsar, M.F., Sher, F., Rafiq, M.A., 2017. Temperature and Composition Dependent Density of States Extracted Using Overlapping Large Polaron Tunnelling Model in MnxCo1-xFe2O4 (x=0.25, 0.5, 0.75) nanoparticles. Physica B: Condensed Matter, Volume 509, pp.76–83 [CrossRef] [Google Scholar]
  12. Jonscher, A.K., 1996. Universal Relaxation Law. Chelsea Dielectrics Press, London. [Google Scholar]
  13. Kharrat, A.B.J., Moussa, S., Moutiaa, N., Khirouni, K., Boujelben, W., 2017. Structural, Electrical and Dielectric Properties of Bi-doped Pr0.8-xBixSr0.2MnO3 Manganite Oxides Prepared by Sol-Gel Process. Journal of Alloys and Compounds, Volume 724, pp.389–399. [Google Scholar]
  14. Liu, S., Liu, W., Liu, Y., Lin, J.-H., Zhou, X.J., Janik, M., Zhang, Q., 2010. Influence Of Imidazolium-Based Ionic Liquids on the Performance of Ionic Polymer Conductor Network Composite Actuators, Polymer International, Volume 59(3), pp.321–328 [Google Scholar]
  15. Mansour, S.A., Yahia, I.S., & Yakuphanoglu, F., 2010. The Electrical Conductivity and Dielectric Properties of C.I. Basic Violet 10. Dyes and Pigments, Volume 87(2), pp.144–148 [CrossRef] [Google Scholar]
  16. Mathew, A., Anand, V., Rao, G.M., Munichandraiah, N., 2013. Effect of Iodine Concentration on the Photovoltaic Properties of Dye Sensitized Solar Cells for Various I2/LiI Ratios. Electrochimica Acta, Volume 87, pp. 92–96. [Google Scholar]
  17. Mellander, Albinsson, B.E., 1996. Electric and Dielectric Properties of Polymer Electrolytes. in:Chowdari, B.V.R, Dissanayake, M.A.K.L., and Careem, M.A. (Eds.), World Scientific, Singapore, pp. 83–96 [Google Scholar]
  18. Muhammad, F.H., Jamal, A., Winie, T., 2016. Dielectric and AC Conductivity Behavior of Hexanoyl Chitosan-NaI Based Polymer Electrolytes. International Journal of Advanced and Applied Sciences, Volume 3(10), pp. 9–13 [CrossRef] [Google Scholar]
  19. Muhammad, F.H., Jamal, A., Winie, T. 2017. Study on Factors Governing the Conductivity Performance of Acylated Chitosan-NaI Electrolyte System. Ionics. Volume 23(11), pp. 1–12 [Google Scholar]
  20. Pike, G.E., 1972. AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity. Physical Review B, Volume 6(4), pp. 1572–1580 [Google Scholar]
  21. Ramly, K., Isa, M.I.N., Khiar, A.S.A., 2011. Conductivity and Dielectric Behaviour Studies of starch/PEO + x wt-% NH4NO3 Polymer Electrolyte. Materials Research Innovations, Volume 15, pp.82–85 [CrossRef] [Google Scholar]
  22. Sim, L.N., Yahya, R., Arof, A.K. 2016. Blend Polymer Electrolyte Films based on Poly(Ethyl Methacrylate)/Poly(Vinylidenefluoride-Co-Hexafluoropropylene) Incorporated with 1-Butyl-3-Methyl Imidazolium Iodide Ionic Liquid. Solid State Ionics, Volume 291, pp. 26–32 [Google Scholar]
  23. Su'ait, M.S., Rahman, M.Y.A., Ahmad, A. 2015. Review On Polymer Electrolyte In Dye-Sensitized Solar Cells (DSSCs). Solar Energy, Volume 115, pp.452–470 [CrossRef] [Google Scholar]
  24. Tan, C.Y., Farhana, N.K., Saidi, N.M., Ramesh, S., Ramesh, K. 2018. Conductivity, Dielectric Studies and Structural Properties of P(VA-Co-PE) and Its Application In Dye Sensitized Solar Cell. Organic Electronics, Volume 56, pp.116–124. [Google Scholar]
  25. Tripathi, S.K., Gupta, A., Kumari, M. 2012. Studies on electrical conductivity and dielectric behaviour of PVdF-HFP-PMMA-NaI polymer blend electrolyte. Bulletin of Materials Science, Volume 35(6), pp. 969–975 [CrossRef] [Google Scholar]
  26. Winie, T., Arof, A.K. 2004. Dielectric Behaviour and AC Conductivity of LiCF3SO3 Doped HChitosan Polymer Films. Ionics, Volume10(3), pp. 193–199 [Google Scholar]
  27. Winie, T., Shahril., N.S.M., 2015. Conductivity Enhancement by Controlled Percolation of Inorganic Salt in Multiphase Hexanoyl Chitosan/Polystyrene Polymer Blends. Frontiers of Materials Science Volume, 9(2), pp. 132–140 [Google Scholar]
  28. Winie, T., Arof, A.K., 2006. Effect of Various Plasticizers on the Transport Properties of Hexanoyl Chitosan-based Polymer Electrolyte. Journal of Applied Polymer Science, Volume 101(6), pp. 4474–4479 [Google Scholar]
  29. Winie, T., Hanif, N.S.M., Chan, C.H., Arof, A.K., 2014. Effect of the Surface Treatment of the TiO2 Fillers on the Properties of Hexanoyl Chitosan/Polystyrene Blend-based Composite Polymer Electrolytes. Ionics, Volume 20(3), pp. 347–352 [Google Scholar]
  30. Woo, H.J., Majid, S.R., Arof, A.K., 2012. Dielectric Properties and Morphology of Polymer Electrolyte based on Poly(ε-Caprolactone) and Ammonium Thiocyanate. Materials Chemistry and Physics, Volume 134(2-3), pp. 755–761 [Google Scholar]
  31. Woo, H.J., Majid, S.R., Arof, A.K., 2013. Effect of Ethylene Carbonate on Proton Conducting Polymer Electrolyte based on Poly(ϵ-Caprolactone) (PCL). Solid State Ionics, Volume 252, pp. 102–108. [Google Scholar]
  32. Yusuf, S.N.F., Yahya, R., Arof, A.K., 2017. Ionic Liquid Enhancement of Polymer Electrolyte Conductivity and their Effects on the Performance of Electrochemical Devices. in: Handy, S., (Eds.), Progress and Developments in Ionic Liquids, London pp. 157–183 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.