Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03038
Number of page(s) 6
Section Multifunctional and Advanced Materials
DOI https://doi.org/10.1051/e3sconf/20186703038
Published online 26 November 2018
  1. P.P.D.K. Wulan and D. Angelina. Synthesis of carbon nanotube using camphor with SS 316 as catalytic substrate via oxidative heat treatment preparation method. Proceedings of the 3rd International Symposium on Applied Chemistry 1904 020080 (2017) [Google Scholar]
  2. P.P.D.K. Wulan, W.W. Purwanto, and Y.D. Lestari. Identification of Carbon loss in the production of pilot-scale Carbon nanotube using gauze reactor. IOP Conf. Series: Materials Science and Engineering. 334 012044 (2017) [CrossRef] [Google Scholar]
  3. C.S. Yah, G.S. Simate, K. Moothi, K.S. Maphutha, and S.E. Iyuke. Synthesis of Large Carbon Nanotube from Ferrocene: The Chemical Vapour Deposition Technique. Trends in Applied Sciences Research 6: 1270–1279 (2011). [CrossRef] [Google Scholar]
  4. P.P.D.K. Wulan and Y.D. Lestari. The Effect of Oxidative Heat Treatment on the Preparation of Stainless Steel 304 and 316 as the Effective Catalytic Substrate for Carbon Nanotube Growth. IJTech Publication (2017) [Google Scholar]
  5. K. Dasguota, J.B. Joshi, and S. Banerjee. Fluidized bed synthesis of carbon nanotubes - A review. Chem. Eng. J. 171 841–869 (2011) [CrossRef] [Google Scholar]
  6. G.W. Young, S.I. Hariharan, and R. Carnahan. Flow Effects in Vertical CVD Reactor. SIAM J. APPL. Math Vol.52, No.6 1509–1532 (1992) [CrossRef] [Google Scholar]
  7. A. Barreiro, S. Hampel, M.H. Riimmeli, C. Kramberger, A. Grilineis, K. Biedermann, A. Leonhardt, T. Gemming, B. Büchner, and T. Pichler. Thermal Decomposition of Ferrocene as a Method for Production of Single-Walled Carbon Nanotubes without Additional Carbon Sources. J. Phys. Chem B, 110, 20973–20977 (2006) [CrossRef] [PubMed] [Google Scholar]
  8. C.M. Seah, S.P. Chai, and A.R. Mohamed. Synthesis of aligned carbon nanotubes. CARBON 49, 4613–4635 (2011) [CrossRef] [Google Scholar]
  9. C. Zhuo, X. Wang, W. Nowak, and Y.A. Levendis. Oxidative Heat Treatment of 316L Stainless Steel for Effective Catalytic Growth of Carbon Nanotubes. Appl. Surf. Sci. (2014) [Google Scholar]
  10. P.P.D.K. Wulan and S.B. Wijardono. Finding an Optimum Period of Oxidative Heat Treatment on SS 316 Catalyst for Nanocarbon Production from LDPE Plastic Waste. International Journal on Advance Science Engineering Information Technology, Vol.7 No.2 (2017) [Google Scholar]
  11. J. Kang, J. Li, X. Du, C. Shi, N. Zhao, and P. Nash. Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper. Mater. Sci. Eng., A. 475 136–140 (2008) [CrossRef] [Google Scholar]
  12. V.O. Nyamori and N.J. Coville. Effect of Ferrocene/Carbon Ratio on the Size and Shape of Carbon Nanotubes and Microspheres. Organometallics 26, 4083–4085 (2007) [CrossRef] [Google Scholar]
  13. S. Mopoung. Occurrence of carbon nanotube from banana peel activated carbon mixed with mineral oil. International Journal of the Physical Sciences Vol. 6 (7), pp. 1789–1792 (2011) [Google Scholar]
  14. Q. Zhang, J.Q. Huang, M.Q. Zhao, W.Z Qian, and F. Wei. Carbon Nanotube in Different Shapes. Material Today Vol. 12, no.6 pp. 12–18 (2011) [CrossRef] [Google Scholar]
  15. M.A. Hossain and S. Islam. Synthesis of carbon nanoparticles from kerosene and their characterization by SEM/EDX, XRD, and FTIR. American Journal of Nanoscienece and Nanotechnology (2) 52–56 (2013) [CrossRef] [Google Scholar]
  16. S. Dardas and M. Faraji. Improve carbon annotube growth inside an anodic aluminum oxide template using microwave radiation. J. Phys. Chem. Solids 116 203–208 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.