Open Access
E3S Web Conf.
Volume 70, 2018
17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018)
Article Number 02012
Number of page(s) 6
Section Heat Transfer and Heat Exchangers
Published online 03 December 2018
  1. United Nations Environment Program (UNEP) Montreal Protocol on Substances that Deplete the Ozone Layer, 1997, (Final Act. United Nations, New York, USA). [Google Scholar]
  2. M. Ghodbane, An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning, Int. Proceedings of the international congress and exposition, pp. no. 1999–01–0874. [Google Scholar]
  3. L. Cheng, G. Ribatski, and J. R. Thome, New prediction methods for CO2 evaporation inside tubes: Part II-An updated general flow boiling heat transfer model based on flow patterns, Int. J. Heat Mass Transf., vol. 51, no. 1–2, pp. 125–135, 2008. [CrossRef] [Google Scholar]
  4. D. Mikielewicz, B. Jakubowska, Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels, Archives of Thermodynamic, vol. 37, no. 2, pp. 89–106, 2016. [CrossRef] [Google Scholar]
  5. J. Mikielewicz, Semi-empirical method of determining the heat transfer coefficient for subcooled staurated boiling in a channel, Int. J. Heat Transfer, vol. 17, pp. 1129–1134, 1973. [CrossRef] [Google Scholar]
  6. D. Mikielewicz, J. Mikielewicz, and J. Tesmar, Improved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes, Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 3949–3956, 2007. [CrossRef] [Google Scholar]
  7. D. Mikielewicz and J. Mikielewicz, A Common Method for Calculation of Flow Boiling and Flow Condensation Heat Transfer Coefficients in Minichannels With Account of Nonadiabatic Effects, Heat Transfer Engineering, vol. 32, no. 13–14, pp. 1173–1181, 2011. [CrossRef] [Google Scholar]
  8. D. Mikielewicz, R. Andrzejczyk, B. Jakubowska, J. Mikielewicz, Analytical Model with Nonadiabatic Effects for Pressure Drop and Heat Transfer During Boiling and Condensation Flows in Conventional Channels and Minichannels, Heat Transfer Eng., vol. 37, no. 13–14, pp. 1158–1171, 2016. [CrossRef] [Google Scholar]
  9. H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Process, vol. 20, pp. 197–308, 1986. [Google Scholar]
  10. L. Friedel, Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, European Two-Phase Flow Group Meeting, 1979, p. Paper E2. [Google Scholar]
  11. T. N. Tran, M. C. Chyu, M. W. Wambsganss, Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development, Int. J. Refrigeration, vol. 26, pp. 1739–1754, 2000. [Google Scholar]
  12. D. Mikielewicz, J. Wajs, R. Andrzejczyk, M. Klugmann, Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. International Journal of Refrigeration, vol. 68, 226–241, 2016. [CrossRef] [Google Scholar]
  13. M. Zhang and R. L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes, Exp. Thermal and Fluid Science, vol. 25, no. 3–4, pp. 131–139, 2001. [CrossRef] [Google Scholar]
  14. P. A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small diameter channels, Appl. Therm. Eng., vol. 17, pp. 705–715, 1997. [CrossRef] [Google Scholar]
  15. M. Docoulombier, S. Colasson, B. J., P. Haberschill, Carbon dioxide flow boiling in a single microchannel – Part II: Heat transfer, Exp. Therm. Fluid Sci., vol. 35, pp. 597 – 611, 2011. [CrossRef] [Google Scholar]
  16. A. S. Pamitran, K.-I. Choi, J.-T. Oh, Nasruddin, Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3 and CO2, Int. Multiph. Flow, vol. 37, pp. 794–801, 2011. [CrossRef] [Google Scholar]
  17. R. Mastrullo, A. W. Mauro, A. Rosato, G. P. Vanoli, Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods, Int. J. Refrig., vol. 33, no. 6, pp. 1068–1085, 2010. [CrossRef] [Google Scholar]
  18. S. H. Yoon, E. S. Cho, Y. W. Hwang, M. S. Kim, K. Min, Y. Kim, Characteristics of evaporative heat transfer and pressure drop of carbon dioxide correlation development, Int. J. Refrig., vol. 27, no. 2, pp. 111–119, 2004. [CrossRef] [Google Scholar]
  19. K.-I. Choi, A. S. Pamitran, C.-Y. Oh, J.-T. Oh, Boiling heat transfer of R22, R134a and CO2, Int. J. Refrig., vol. 30, no. 8, pp. 1336–1346, 2007. [CrossRef] [Google Scholar]
  20. H.-K. Oh, C. H. Son, Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57 mm inner diameter, Appl. Therm. Eng., vol. 31, no. 2–3, pp. 163–172, 2011. [CrossRef] [Google Scholar]
  21. C. Dang, N. Haraguchi, E. Hihara, Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube, Int. J. Refrig., vol. 33, no. 4, pp. 655–663, 2010. [CrossRef] [Google Scholar]
  22. Y. J. Kim, J. M. Cho, M. Kim, Experimental study on the evaporative heat trans- fer and pressure drop of CO 2 flowing upward in vertical smooth and microfin tubes with diameter of 5 mm, Int. J. Refrig., vol. 31, no. 5, pp. 771–779, 2008. [CrossRef] [Google Scholar]
  23. J. Wu, T. Koettig, C. Franke, D. Helmer, T. Eisel, F. Haug, J. Bremer, Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal mini-channel, Int. J. Heat Mass Transf., vol. 54, pp. 2154–2162, 2011. [CrossRef] [Google Scholar]
  24. J. M. Cho, M. S. Kim, Experimental studies on the evaporative heat transfer and pressure drop CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm, Int. J. Refrig., vol. 30, no. 6, pp. 986–994, 2007. [CrossRef] [Google Scholar]
  25. X. Zhao, P. K. Bansal, Flow boiling heat transfer characteristic of CO 2 at low temperatures, Int. J. Refrig., vol. 30, pp. 937–945, 2007. [CrossRef] [Google Scholar]
  26. A. V Belyaev, A. N. Varava, A. V Dedov, A. T. Komov, An experimental study of flow boiling in minichannels at high reduced pressure, Int. J. Heat Mass Transf., vol. 110, pp. 360–373, 2017. [CrossRef] [Google Scholar]
  27. A. W. Mauro, Flow boiling of refrigerants: from low to high reduced pressure, in UIT Summer School, 2017. [Google Scholar]
  28. J. Wajs, D. Mikielewicz, Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger, Applied Thermal Engineering, 93, 1337–1346, 2016. [CrossRef] [Google Scholar]
  29. J. Wajs, D. Mikielewicz, E. Fornalik-Wajs, Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions, Journal of Physics Conference Series 745 (2016), No. 032063. DOI:10.1088/1742-6596/745/3/032063 [CrossRef] [Google Scholar]
  30. J. Wajs, D. Mikielewicz, B. Jakubowska, Performance of the domestic micro ORC equipped with the shell-and-tube condenser with minichannels, Energy, 157(2018) 853–861. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.