Open Access
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 05006
Number of page(s) 5
Section Environmental Technology and Pollution Control
Published online 21 December 2018
  1. Verma, M and Kumar, R.N. 2016. Can coagulation-flocculation be an effective pre-treatment option for landfill Leachate and municipal wastewater co-treatment?. Perspectives in Sci8, 492–494. .(2016) [CrossRef] [Google Scholar]
  2. Liu, X., Li, X.M., Yang, Q., Yue, X., Shen, T. T., Zheng, W., Luo, K., Sun, Y.H., Zeng, G.M., Landfill leachate pretreatment by coagulation- flocculation process using iron based coagulants: optimization by response surface methodology. Chem. Eng. J. 202, 39–51.(2012). [Google Scholar]
  3. I. Bodlund, A.R. Pavankumar, R. Chelliah, S. Kasi, K. Sankaran, G.K. Rajarao, Coagulant proteins identified in Mustard: a potential water treatment agent, Int. J. Environ. Sci. Technol. 11. 873–880.(2014) [CrossRef] [Google Scholar]
  4. Choy, S., Y., Prasad, K.,M.,N., Wu, T., Y., Raghunandan, M., E., Ramanan, R., N. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. Of. Env. Sci. 2178–2189.(2014) [CrossRef] [Google Scholar]
  5. Lee, C., S., Robinson, J., Chong, M.,F. 2014. A review on application of flocculants in wastewater treatment. Proc. Safety and Env. Prot. 9 2 489–508.(2014). [CrossRef] [Google Scholar]
  6. Yin, C.Y., Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444.(2010). [Google Scholar]
  7. Brown, W. H.; Poon, T. Introduction to organic chemistry (3rd ed.). Wiley. (2005). ISBN 0-47144451-0. [Google Scholar]
  8. M.A.A. Razali, A. Ariffin. 2015. Focculant Based on Cassava Starch Grafted Polydiallyl Dimethyl Ammonium Chloride: Flocculation Behavior and Mechanism. Appl. Surf. Sci. 351. 89–94. (2015). [Google Scholar]
  9. Du, Q., Wang, Y., Li, A., Yang, H. Scale-inhibition and flocculation dual-functionality of poly(acrylicacid) grafted starch. J. of Env. Man. 210. 273–279 (2018) [CrossRef] [Google Scholar]
  10. Lapointe, M., Barbeau. B. 2017. Dual starchepolyacrylamide polymer system for improved flocculation. Water Res. 124. 202–209. (2017). [CrossRef] [PubMed] [Google Scholar]
  11. BSBI List. Botanical Society of Britain and Ireland. Archived from the original (xls) on 2015-01-25. Retrieved .10-17. (2014) [Google Scholar]
  12. USDA PLANTS, retrieved 10 June 2016 [Google Scholar]
  13. USDA GRIN Taxonomy, retrieved 10 June 2016. &cl=2720. [Google Scholar]
  14. Fernandez-Banares F, Hinojosa J, Sanchez-Lombrana JL, Navarro E, Martinez-Salmeron JF, Garcia-Puges A, Gonzalez-Huix F, Riera J, Gonzalez-Lara V, Dominguez-Abascal F, Gine JJ, Moles J, Gomollon F, Gassull MA. Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn's Disease and Ulcerative Colitis (GETECCU). Am. J. Gastroenterol. 94 (2): 427–33. (1999) doi:10.1016/s0002-9270(98) 007539. PMID 1002264 [Google Scholar]
  15. Shahriari, T., Nabi B., G., Shahriari, Sh. Evaluating the Efficiency of Plantago Ovata and Starch in Water turbidity removal. Int. J. Environ. Res., 6(1):259–264. (2012). [Google Scholar]
  16. Dhivya, S., S. T. Ramesh, R. Gandhimathi, P. V. Nidheesh. Performance of Natural Coagulant Extracted from Plantago ovata Seed for the Treatment of Turbid Water. Water Air and Soil Pollution 228(11). (2017). [CrossRef] [Google Scholar]
  17. Parotta, John A. (1993). Moringa oleifera Lam. Reseda, horseradish tree. Moringaceae. Horseradish tree family. USDA Forest Service, International Institute of Tropical Forestry. Retrieved .11–20.(2013). [Google Scholar]
  18. Abdulkarim, S.,M., Long, K., Lai., O., M., Muhammad, S.,K.,S., Ghazali,.H.,M.,. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chemistry 93(2):253–263 (2005). [Google Scholar]
  19. Lea, M., Bioremediation of Turbid Surface Water Using Seed Extract from Moringa oleifera Lam. (Drumstick) Tree. Current Protocols in Microbiology. (2010). doi:10.1002/9780471729259.mc01g02s16. ISBN 0471729256. [Google Scholar]
  20. Ndabigengesere, Anselme; Narasiah, K.Subba; Talbot, Brian G. Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research. 29 (2). 703–710.(1995). doi: 10.1016/0043-1354(94)00161-Y. [Google Scholar]
  21. Hellsing, Maja S.; Kwaambwa, Habauka M.; Nermark, Fiona M.; Nkoane, Bonang B.M.; Jackson, Andrew J.; Wasbrough, Matthew J.; Berts, Ida; Porcar, Lionel; Rennie, Adrian R. Structure of flocs of latex particles formed by addition of protein from Moringa seeds. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 460. (2013). 460–467. doi:10.1016/j.colsurfa.2013.11. 038. [CrossRef] [Google Scholar]
  22. Villasenor-Basulto, D.,L., Astudillo-Sanchez, P., D., Real-Olvera, J., D., Bandala, E., R. Wastewater treatment using Moringa oleifera Lam seeds: A review. Journal of Water Process Engineering 23. 151–164.(2018). [CrossRef] [Google Scholar]
  23. Idris, J., Md Som, A., Musa, M., Ku Hamid, K.H., Husen, R., Muhd Rodhi, M.N., 2013. Dragon fruit foliage plant-based coagulant for treatment of concentrated latex effluent: comparison of treatment with ferric sulfate. J.Chem. [Google Scholar]
  24. T.R. Santos, M.F. Silva, L. Nishi, A.M. Vieira, M.R. Klein, M.B. Andrade, M.F. Vieira, R. Bergamasco, Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment, Env. Sci. Pollut. Res. 1–9. (2016) [Google Scholar]
  25. “Tamarind” [Google Scholar]
  26. Sa'id, S., Mohammed, K., Adie, D. B., Okuofu, C. A. Turbidity Removal From Surface Water Using Tamarindus indica Crude Pulp Extract. Bayero Journal of Pure and Applied Sciences, 9(1): 236–240. (2016). [CrossRef] [Google Scholar]
  27. Rahman, M.,M., Sarker, P., Saha, B., Jakarin, N., Shammi, M., Uddin, M.,K., Sikder, Md., T. Removal of Turbidity from the River Water using Tamarindus indica and Litchi chinensis Seeds as Natural Coagulant. Intern. J. of Env. Prot. and Policy 2015; 3(2-1): 19–26. (2015). [Google Scholar]
  28. Kumawat, N., Koul., N., Indrekar, J., Payghan, S., Treatment Of Textile Effluent By Using Natural Coagulants. 7th International Conference on Recent Trenda in Engineering, Science & Management. (2017). ISBN: 978-9386171-12-2. [Google Scholar]
  29. Prasad, S.,V., Rao, B., S. 2016. Influence of Plant-Based Coagulants in Waste Water Treatment. Int.J. of Latest Tech. in Eng. Man. & App. Sc. 5(3): 45–48. [Google Scholar]
  30. Ramesh, S., Mekala, L. 2018. Treatment Of Textile Waste Water Using Moringa Oleifera and Tamarindus Indica. Intern. Research J. of Eng. And Tech. (IRJET) 05(03). (2018) [Google Scholar]
  31. “Durio zibethinus” wiki/Durio_zibethinus [Google Scholar]
  32. Amin, A., M., Arshad, R. Proximate composition and pasting properties of durian (Durio zibethinus) seed flour. Int. J. of Postharvest Tech. and Innov. 1(4) (2009). doi: 10.1504/IJPTI.2009.030685 [CrossRef] [Google Scholar]
  33. Zamri M., F., M., A., Suja, F., Yusoff, M., S., Aziz, H., A., Bahru, R. The comparison of Durio Zibethinus seed starch extraction for landfill leachate treatment. Mat.Research Exp. 5(7).(2018) [Google Scholar]
  34. Yusoff, M., S., Aziz, H., A., Zamri, M., F., M., A., Abdullah, A., Z., Basri, N., E., A., Suja, F. 2018. Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Management. 74. 362–372. (2018) [CrossRef] [Google Scholar]
  35. Sillanp, M., Ncibi, M., C., Matilainen, A., Vepsalainen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 190 54–71. (2018) . [PubMed] [Google Scholar]
  36. Singh, R.P., Karmakar, G.P., Rath, S.K., Karmakar, N.C., Pandey, S.R., Tripathy, T., Panda, J., Kanan, K., Jain, S.K., Lan, N.T., Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym. Eng. Sci.(2000). [Google Scholar]
  37. Li, T., Zhu, Z., Wang, D.S., Yao, C.H., Tang, H.X., Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol. 168 (2), 104–110. (2006). [Google Scholar]
  38. Huang, M., Liu, Z., Li, A., Yang, H. 2017. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. Journal of Environmental Management 196 63–71. (2017). [CrossRef] [PubMed] [Google Scholar]
  39. Ghebremichael, K., Overcoming the drawbacks of natural coagulants for drinking water treatment. Water Sci. Technol.Water Supply 7 (4), 87–93.(2007). [CrossRef] [Google Scholar]
  40. Sathiyabama, M., Purification of a coagulant protein from seeds of Moringa concanensis. Water Sci. Technol. Water Supply 12 (3), 329–333. (2012). [CrossRef] [Google Scholar]
  41. Sutherland, J., Folklard, G., Poirier, Y., Moringa oleifera. The constraints to commercialization. International Workshop: 29th October-2nd November, Dar es Salaam, Tanzania, (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.