Open Access
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 05017
Number of page(s) 5
Section Environmental Technology and Pollution Control
Published online 21 December 2018
  1. Asadi, S., Shahrabi, J., Abbaszadeh, P., Tabanmehr, S., 2013, A new hybrid artificial neural networks for rainfall-runoff process modeling, Neurocomputing, 121, pp 470–480 [CrossRef] [Google Scholar]
  2. Benmahdjouba, K., Ameura, Z., Boulifa, M., 2013, Forecasting of Rainfall using Time Delay Neural Network in Tizi-Ouzou (Algeria), Energy Procedia 36 (2013) 1138–1146 [CrossRef] [Google Scholar]
  3. Cigizoglu, H.,K., Askin., P., Ozturk, A., Gurbuz, A., Ayhan, O., Yildiz, Mand Ucar, I., 2008, Artificial Neural Network Models in Rainfall-Runoff Modelling of Turkish Rivers, International Congress on River Basin Management, pp. 560–571 [Google Scholar]
  4. Kim, S., Seo, Y., and Lee, C.J., 2016, Modeling of Rainfall by Combining Neural Computation and Wavelet Technique, Procedia Engineering, 154: pp 1231–1236 [CrossRef] [Google Scholar]
  5. Lin, G.F dan Wu, M.C., 2009, A hybrid neural network model for typhoon-rainfall forecasting, Journal of Hydrology 375 (2009) 450–458 (SOM &MLP) [CrossRef] [Google Scholar]
  6. Mekanik, F., Imteaz, M.A., Trinidad, S.G., Elmahdi, A., 2013, Multiple Regression and Artificial Neural Network for Long-Term Rainfall Forecasting Using Large Scale Climate Modes, Journal of Hydrology 503 (2013) 11–21 [CrossRef] [Google Scholar]
  7. Wang, Y.M. and Traore, S., 2009, Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area, International Journal of Physical Sciences Vol. 4 (9), pp. 519–528, Available online at [Google Scholar]
  8. Yasin, H., 2014, Prediction of Weekly Rainfall in Semarang City use Support Vector Regressions, Prosiding Seminar Internasional the 4th ISNPINSA, Hotel Patra Jasa Semarang [Google Scholar]
  9. Yasin, H. dan Prahutama, A., 2015, Prediction of Weekly Rainfall in Semarang City Use Support Vector Regression (SVR) with Quadratic Loss Function, International Journal of Science and Engineering (IJSE), ISSN: 1086-5023, Vol. 9 No.1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.