Open Access
Issue
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 05023
Number of page(s) 5
Section Environmental Technology and Pollution Control
DOI https://doi.org/10.1051/e3sconf/20187305023
Published online 21 December 2018
  1. United States Environmental Protection Agency, USEPA Electro kinetic and Phytoremediation in Situ Treatment of Metal-Contaminated Soil: State-of-the-Practice. Draft for Final Review. EPA/542/R-00/XXX. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington DC (2000) [Google Scholar]
  2. Zhang, M.-K., Liu, Z.-Y., & Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Communications in Soil Science and Plant Analysis, 41(7), 820–839 (2010) [Google Scholar]
  3. Mangkoedihardjo sarwoko and Surahmaida. Jatropha curcas L. for Phytoremediation of Lead and Cadmium Polluted Soil. World Applied Sciences Journal 4 (4): 519–522 (2008) [Google Scholar]
  4. Khan , S., Hesham, A.E,L., Qiao, M., Rehman, S., He, J.Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 17, 288–296 (2010) [CrossRef] [Google Scholar]
  5. Ali, H., Khan, E. and Sajad, M.A. Phytoremediation of Heavy Metals-Concepts and Applications. Chemosphere, 91, 869–881 (2013 [CrossRef] [PubMed] [Google Scholar]
  6. Kalve, S., Sarangi, B.K., Pandey, R.A., Chakrabarti, T. 2011. Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata-prospective for phytoextraction from contaminated water and soil. Curr. Sci. 100, 888–894. [Google Scholar]
  7. Badr, N., Fawzy, M., Al-Qahtani, K.M. 2012. Phytoremediation: an economical solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Appl. Sci. J. 16, 1292–1301. [Google Scholar]
  8. Vithanage, M., Dabrowska, B.B., Mukherjee, B., Sandhi, A., Bhattacharya, P., 2012. Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ. Chem. Lett. 10, 217–224 [Google Scholar]
  9. Varun, M., D'Souza, R., Pratas, J., Paul, M.S., 2011. Phytoextraction potential of Prosopis juliflora (Sw.) DC. with specific reference to lead and cadmium. Bull.Environ. Contam. Toxicol. 87 (1), 45–49 [CrossRef] [Google Scholar]
  10. Rakhshaee R., M. Giahi, and A. Pourahmad. 2009. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution, Journal of Hazardous Materials, vol. 163, no. 1, pp. 165–173 [CrossRef] [PubMed] [Google Scholar]
  11. Zhang, M.-K., Liu, Z.-Y., & Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831 (2010) [Google Scholar]
  12. Kumar, A., M. Prasad and O. Sytar. 2012. Lead toxicity, defence strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. 89:1056–1065 [PubMed] [Google Scholar]
  13. Van Aken, B. Transgenic plants fo renhanced phytoremediation of toxic ex plosives. Curr. Opin. Biotechnol. 20, 231–236 (2009) [Google Scholar]
  14. Pandey, V. C. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. relationwith metal speciation: Role of synthetic and natural organic ligands. J. Hazard. Mater. 219, 1–12 (2012) [Google Scholar]
  15. Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. Volume 2011 [CrossRef] [Google Scholar]
  16. Naees, M., Ali, Q., Shahbaz, M., Ali, F. Role of rhizobacteria in phytoremediation of heavy metals: a n overview. Int. Res.J. Plant Sci. 2, 220–232 ( 2011) [Google Scholar]
  17. Ramamurthy, A.S., Memarian, R. Phytoremediation of mixed soil contaminants. Waer Air Soil Pollut. 223, 511–518 (2012) [CrossRef] [Google Scholar]
  18. Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B., Singh, R.P. Jatrophacurcas: a potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 16, 2870–2883 (2012) [CrossRef] [Google Scholar]
  19. J.N. Liu, Q.X. Zhou, X.F. Wang, Q.R. Zhang, T. Sun, Potential of ornamental plant resources applied to contaminated soil remediation, in: J.A. Teixeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Global Science Books, London, 245–252.(2006) [Google Scholar]
  20. Nahed G. Abd El Aziz, Mona H. Mahgoub, Azza, M. M. Potentiality of Ornamental Plants and Woody Trees as Phytoremidators of Pollutants in the Air: A Review. International Journal of Chem Tech Research 8, No.6, 468–482 (2015) [Google Scholar]
  21. Malar Srinivasan., Sahi Shivendra Vikram, Paulo JC Favas and Venkatachalam Perumal. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia rassipes (Mart.)]. Botanical Studies, 2014.55:54 (2014) [CrossRef] [PubMed] [Google Scholar]
  22. Zhang, M.-K., Liu, Z.-Y., & Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831 (2010 [Google Scholar]
  23. Kozhevnikova A. D., Seregin I. V., Bystrova E. I., Belyaeva A. I., Kataeva M. N., Ivanov V. B. The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russ. J. Plant Physiol. 56 242–250(2009). [Google Scholar]
  24. Malecka A., Piechalak A., Tomaszewska B. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol. Plant. 31 1053–1063 (2009). [Google Scholar]
  25. Gupta, A. K., Verma, S. K., Khan, K., & Verma, R. K. 2013. Phytoremediation using aromatic plants: A sustainable approach for remediation of heavy metals polluted sites. Environmental Science and Technology, 47(18), 10115–10116. [Google Scholar]
  26. Piotrowska A, Bajguz A, Godlewska B, Czerpak R, Kaminska M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza Lamnaceae). Environ Exp Bot 66:507–513(2009) [Google Scholar]
  27. Beladi, M., & Habibi, D. (2011). Phytoremediation of lead and copper by sainfoin (Onobrychis vicifolia): role of antioxidant enzymes and biochemical biomarkers. American-Eurasian Journal of Agricultural & Environmental Sciences, 10(3), 440–449 [Google Scholar]
  28. Arshad, M., Silvestre, J., Pinelli, E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., Shahid, M., Guiresse, M., Pradere, P., and Dumat, C. 2008. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71, 2187–2192 [PubMed] [Google Scholar]
  29. Thakur Sveta, Singh Lakhveer, Wahid Zularisam, Siddiqui Muhammad Faisal, Atnaw Samson Mekbib, Mohd Fadhil. 2016 . Plant-driven removal of heavy metals from soil: uptake, translocation,tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.