Open Access
Issue
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 08010
Number of page(s) 4
Section Environment, Infrastructure Development, Culture and Society
DOI https://doi.org/10.1051/e3sconf/20187308010
Published online 21 December 2018
  1. O. Pulz, “Photobioreactors: Production systems for phototrophic microorganisms,” Appl. Microbiol. Biotechnol., vol. 57, No. 3, pp. 287–293, (2001). [CrossRef] [PubMed] [Google Scholar]
  2. S.-K. Kim, Handbook of Marine Microalgae. Elsevier, (2015). [Google Scholar]
  3. M. G. de Morais, D. da Fontoura Prates, J. B. Moreira, J. H. Duarte, and J. A. V. Costa, “Phycocyanin from Microalgae: Properties, Extraction and Purification, with Some Recent Applications,” Ind. Biotechnol., vol. 14, No. 1, pp. 30–37, (2018). [CrossRef] [Google Scholar]
  4. J. T. M. Leema, R. Kirubagaran, N. V Vinithkumar, P. S. Dheenan, and S. Karthikayulu, “Bioresource Technology High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater,” Bioresour. Technol., vol. 101, No. 23, pp. 9221–9227, (2010). [Google Scholar]
  5. E. N. Dewi and L. Purnamayati, “Phycocyanin extraction in Spirulina produced using agricultural waste Phycocyanin extraction in Spirulina produced using agricultural waste,” (2017). [Google Scholar]
  6. S. P. Cuellar-bermudez, I. Aguilar-hernandez, D. L. Cardenas-chavez, N. Ornelas-soto, M. A. Romero-ogawa, and N. Leon, “Minireview Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins,” (2015). [Google Scholar]
  7. C. C. Moraes, J. F. De Medeiros Burkert, and S. J. Kalil, “C-phycocyanin extraction process for large-scale use,” J. Food Biochem., vol. 34, no. SUPPL. 1, pp. 133–148, (2010). [Google Scholar]
  8. S. Guan, “Extracting Phycocyanin From Spirulina and Hydrothermal Liquefaction of Its Residues To Produce Bio-Crude Oil,” (2016). [Google Scholar]
  9. H. Horvath, A. W. Kovacs, C. Riddick, and M. Presing, “Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake Extraction methods for phycocyanin determination in freshwater fi lamentous cyanobacteria and their application in a shallow l,” Eur. J. Phycol., vol. 48, No. 3, pp. 278–286, (2013). [Google Scholar]
  10. N. Abyor, M. Deviana, I. Dianratri, and A. Nugroho, “A Simple Method for Efficient Extraction and Separation of C-phycocyanin from Spirulina platensis,” vol. 43, no. March 2005, pp. 15, (2012). [Google Scholar]
  11. J. Yu, “Application of an ultrafine shearing method for the extraction of C-phycocyanin from Spirulina platensis,” Molecules, vol. 22, No. 11, p. 2211–2023, (2017). [Google Scholar]
  12. Hadiyanto, Suttrisnorhadi, H. Sutanto, and M. Suzery, “Phyocyanin extraction from microalgae Spirulina platensis assisted by ultrasound irradiation: Effect of time and temperature,” Songklanakarin J. Sci. Technol., vol. 38, No. 4, pp. 391–398, (2016). [Google Scholar]
  13. Rame, A. Tridecima, H. Pranoto, Moesliem, and Miftahuddin, “FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh,” E3S Web Conf., vol. 31, pp. 1–5, (2018). [Google Scholar]
  14. Rame, A. Purwanto, and A. Budiarto, “Treatment of Textile Waste water Based Catalytic Ozonation With Iron (III) Oxide (Fe2O3) and Aluminum Oxide (Al2O3) Catalysts Using Micro Diffuser,” Res. J. Ind. Pollut. Prev. Technol., vol. 8, No. 2, pp. 67–75, (2017). [Google Scholar]
  15. C. P. Rivero et al., Current Developments in Biotechnology and Bioengineering. (2017). [Google Scholar]
  16. J. Singh, “Effluent Treatment Plant: Design, Operation And Analysis Of Waste Water,” (2012). [Google Scholar]
  17. C. Posten and F. C. Steven, Microalgae Biotechnology, vol. 153. Springer, (2016). [CrossRef] [Google Scholar]
  18. R. Vali Aftari, K. Rezaei, A. R. Bandani, and A. Mortazavi, “Antioxidant activity optimisation of Spirulina platensis C-phycocyanin obtained by freeze-thaw, microwave-assisted and ultrasound-assisted extraction methods,” Qual. Assur. Saf. Crop. Foods, vol. 9, No. 1, pp. 1–9, (2017). [CrossRef] [Google Scholar]
  19. R. Vali Aftari, K. Rezaei, A. Mortazavi, and A. R. Bandani, “The Optimized Concentration and Purity of Spirulina platensisC-Phycocyanin: A Comparative Study on Microwave-Assisted and Ultrasound-Assisted Extraction Methods,” J. Food Process. Preserv., vol. 39, No. 6, pp. 3080–3091, (2015). [Google Scholar]
  20. D. Y. Kim et al., “Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus,” Bioresour. Technol., vol. 199, pp. 300–310, (2016). [Google Scholar]
  21. X. Luo, P. Smith, C. L. Raston, and W. Zhang, “Vortex fluidic device-intensified aqueous two phase extraction of C-phycocyanin from spirulina maxima,” ACS Sustain. Chem. Eng., vol. 4, No. 7, pp. 3905–3911,(2016). [Google Scholar]
  22. W. Pan-utai, W. Kahapana, and S. Iamtham, “Extraction of C-phycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid,” J. Appl. Phycol., vol. 30, No. 1, pp. 1–12, (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.