Open Access
E3S Web Conf.
Volume 78, 2019
2018 International Seminar on Food Safety and Environmental Engineering (FSEE 2018)
Article Number 01005
Number of page(s) 4
Section Nutrition and Health, Medical Treatment and Biomedical Engineering
Published online 15 January 2019
  1. Mellman I, Coukos G, Dranoff G: Cancer immunotherapy comes of age. Nature 2011, 480:480-489. [CrossRef] [PubMed] [Google Scholar]
  2. Chen DS, Mellman I: Oncology meets immunology:the cancer-immunity cycle. Immunity 2013, 39:1-10. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Kershaw MH, Westwood JA, Darcy PK: Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013, 13:525-541. [Google Scholar]
  4. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH: Therapeutic cancer vaccines. J Clin Invest 2015, 125:3401-3412. [CrossRef] [PubMed] [Google Scholar]
  5. Gonzalez FE, Gleisner A, Falcon-Beas F, Osorio F, Lopez MN, Salazar-Onfray F: Tumor cell lysates as immunogenic sources for cancer vaccine design. Hum Vaccin Immunother 2014, 10:3261-3269. [CrossRef] [PubMed] [Google Scholar]
  6. Chandra J, Dutton JL, Li B, Woo WP, Xu Y, Tolley LK, Yong M, Wells JW, G RL, Finlayson N, Frazer IH: DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection. J Immunother 2017, 40:62-70. [Google Scholar]
  7. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144:646-674. [CrossRef] [PubMed] [Google Scholar]
  8. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW: Cancer genome landscapes. Science 2013, 339:1546-1558. [Google Scholar]
  9. Lu YC, Robbins PF: Targeting neoantigens for cancer immunotherapy. Int Immunol 2016, 28:365-370. [CrossRef] [PubMed] [Google Scholar]
  10. Steuer CE, Ramalingam SS: Tumor Mutation Burden: Leading Immunotherapy to the Era of Precision Medicine? J Clin Oncol 2018, 36:631-632. [CrossRef] [PubMed] [Google Scholar]
  11. Lu YC, Robbins PF: Cancer immunotherapy targeting neoantigens. Semin Immunol 2016, 28:22-27. [Google Scholar]
  12. Aldous AR, Dong JZ: Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Bioorg Med Chem 2018, 26:2842-2849. [CrossRef] [PubMed] [Google Scholar]
  13. Desrichard A, Snyder A, Chan TA: Cancer Neoantigens and Applications for Immunotherapy. Clin Cancer Res 2016, 22:807-812. [CrossRef] [PubMed] [Google Scholar]
  14. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al.: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348:124-128. [Google Scholar]
  15. Topalian SL, Taube JM, Anders RA, Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016, 16:275-287. [CrossRef] [PubMed] [Google Scholar]
  16. Sensi M, Anichini A: Unique tumor antigens:evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 2006, 12:5023-5032. [CrossRef] [PubMed] [Google Scholar]
  17. Gubin MM, Artyomov MN, Mardis ER, Schreiber RD: Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 2015, 125:3413-3421. [CrossRef] [PubMed] [Google Scholar]
  18. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, et al.: Exploiting the mutanome for tumor vaccination. Cancer Res 2012, 72:1081-1091. [Google Scholar]
  19. Schumacher TN, Schreiber RD: Neoantigens in cancer immunotherapy. Science 2015, 348:69-74. [Google Scholar]
  20. Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ: Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res 2013, 1:11-15. [PubMed] [Google Scholar]
  21. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP: Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348:803-808. [Google Scholar]
  22. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, Stevens J, Lane W, Zhang GL, Eisenhaure TM, et al.: Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 2017, 46:315-326. [CrossRef] [PubMed] [Google Scholar]
  23. Bassani-Sternberg M, Coukos G: Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 2016, 41:9-17. [CrossRef] [PubMed] [Google Scholar]
  24. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, et al.: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014, 515:572-576. [CrossRef] [PubMed] [Google Scholar]
  25. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al.: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009, 361:1838-1847. [CrossRef] [PubMed] [Google Scholar]
  26. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE 2nd, McLendon RE, Mitchell DA, et al.: Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010, 28:4722-4729. [CrossRef] [PubMed] [Google Scholar]
  27. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, Boegel S, Schrors B, Vascotto F, Castle JC, et al.: Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015, 520:692-696. [CrossRef] [PubMed] [Google Scholar]
  28. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al.: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547:217-221. [CrossRef] [PubMed] [Google Scholar]
  29. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, et al.: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547:222-226. [CrossRef] [PubMed] [Google Scholar]
  30. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Tureci O, Sahin U: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010, 70:9031-9040. [Google Scholar]
  31. Su W, Slepenkov S, Grudzien-Nogalska E, Kowalska J, Kulis M, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J, Rhoads RE: Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 2011, 17:978-988. [CrossRef] [PubMed] [Google Scholar]
  32. Tran E, Robbins PF, Rosenberg SA: ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 2017, 18:255-262. [CrossRef] [PubMed] [Google Scholar]
  33. Yu Y, Cui J: Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018, 16:4105-4113. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.