Open Access
Issue
E3S Web Conf.
Volume 78, 2019
2018 International Seminar on Food Safety and Environmental Engineering (FSEE 2018)
Article Number 01006
Number of page(s) 6
Section Nutrition and Health, Medical Treatment and Biomedical Engineering
DOI https://doi.org/10.1051/e3sconf/20197801006
Published online 15 January 2019
  1. Shoback DG, Gardner D, et al., “Chapter 17”. Greenspan’s basic & clinical endocrinology (9th ed.). New York: McGraw-Hill Medical (2011) [Google Scholar]
  2. F.Y. Zhou, Y.F. Yang, Y. Shi, Advances in Insulin Resistance and its Signalling Pathway, J. Liaoning Univ. Tradit. Chin. Med. 18, 71-73 (2016) [Google Scholar]
  3. M.N. Chi M, Y. Ye, X.D. Zhang, et al., Insulin induces drug resistance in melanoma through activation of the PI3K/AKT pathway, Drug Des., Dev. Ther. 2, 255-262 (2014) [Google Scholar]
  4. Y.L. Wu, X.T. Chang, Interactions between Insulin Signalling Pathway, Inflammation Signalling Pathway and ubiquitin-proteasome system, Chin. J. Biochem. Mol. Biol. 32, 1177-1184 (2016) [Google Scholar]
  5. Y. Zhang, X. Zhang, H. Zhang, et al., Kinase AKT controls innate immune cell development and function, Immunol. 140, 143-152 (2013) [CrossRef] [Google Scholar]
  6. J. Yang, T. Ikezoe, C. Nishioka, et al., Bcr-Abl activates AURKA and AURKB in chronic myeloid leukemia cells via AKT signalling, Int. J. Cancer, 134, 1183-1194 (2013) [CrossRef] [PubMed] [Google Scholar]
  7. X.K. Zheng, W.W. Wang, W.S. Feng, Advance in the study of the insulin-stimulated PI3K/PKB signal pathway, Chin. J. New Drugs, 21, 2763-2770 (2012) [Google Scholar]
  8. C. De Luca, J.M. Olefsky, Inflammation and insulin resistance, FEBS Lett, 582, 97-105 (2008) [CrossRef] [PubMed] [Google Scholar]
  9. A. Belfiore, R. Malaguamera, Insulin receptor and cancer, Endocr.-Relat. Cancer. 18, 125-147 (2011) [CrossRef] [Google Scholar]
  10. R. Malaguamera, A. Belfiore, The emerging role of insulin and insulin-like growth factor signalling in cancer stem cells, Front. Cancer Endocrinol. 5, 10 (2014) [Google Scholar]
  11. M.L. Goalstone, ERK 5: A Novel IKKα-kinase in rat hippocampal neurons, Can. J. Neurol. Sci. 38, 639-648 (2011) [CrossRef] [PubMed] [Google Scholar]
  12. L. Rui, T.L. Fisher, J. Thomas, et al., Regulation of insulin/insulin-like growth factor-1 signalling by proteasome-mediated degradation of insulin receptor substrate-2, J. Biol. Chem. 276, 40362-40367 (2001) [CrossRef] [PubMed] [Google Scholar]
  13. Z. Gao, X. Zhang, Zuberia, et al., Inhibition of insulin sensitivity by free fatty acids requires activation of multiple aerine kinases in 3T3-L1 adipocytes, Mol. Endocrinol. 18, 2024-2034 (2004) [CrossRef] [PubMed] [Google Scholar]
  14. T.Y. Choi, J.E. Kwon, E.S. Durrance, et al., Melatonin inhibits voltage-sensitive Ca(2+) channelmediated neurotransmitter release. Brain Res. 1557, 34-42 (2014) [CrossRef] [PubMed] [Google Scholar]
  15. L.A. Nolte, D.H. Han, P.A. Hansen, et al., A Peroxovanadium Compound Stimulates Muscle Glucose Transport as Powerfully As insulin and Contractions Combined, Diabetes, 52, 1918-1925 (2003) [CrossRef] [PubMed] [Google Scholar]
  16. H.Y. Zhao, Y. Wang, Y.P. Ma, et al., Insulin signal transduction disorder and insulin resistance, New Med. 41, 267-271 (2010) [Google Scholar]
  17. J. Zhang, C.J. Zhao, H. Cai, The pathophysiological mechanisms of insulin resistance and relative cardiovascular injury, Anhui Medical and Pharmaceutical Journal, 22, 207-211 (2018) [Google Scholar]
  18. Y.K. Wang, Advances in insulin signal transduction and insulin resistance, Hebei Medical University (2017) [Google Scholar]
  19. J.M. Olefsky, C.K. Glass, Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219-246 (2010) [CrossRef] [PubMed] [Google Scholar]
  20. C.C. Chuang, K. Martinez, G. Xie, et al., Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am. J. Clin. Nutr. 92, 1511-1521 (2010) [CrossRef] [PubMed] [Google Scholar]
  21. I. Nieto-Vazquez, S. Fernández-Veledo, C. de Alvaro, et al., Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle, Diabetes, 57, 3211-3221 (2008) [CrossRef] [PubMed] [Google Scholar]
  22. J. He, I. Usui, K. Ishizuka, et al. Interleukin-1alpha inhibits insulin signalling with phosphorylating insulin receptor substrate-1 on serine residues in 3T3-L1 adipocytes, Mol. Endocrinol. 20, 114-124 (2006) [CrossRef] [PubMed] [Google Scholar]
  23. T. Uno, J. He, Usui I, et al., Long-term interleukin-1alpha treatment inhibits insulin signalling via IL-6 production and SOCS3 expression in 3T3-L1 adipocytes, Horm. Metab. Res. 40, 8-12 (2008) [CrossRef] [PubMed] [Google Scholar]
  24. D.Y. Oh, H. Morinaga, S. Talukdar, et al., Increased macrophage migration into adipose tissue in obese mice, Diabetes, 61, 346-354 (2012) [CrossRef] [PubMed] [Google Scholar]
  25. M. Pirvulescu, I. Manduteanu, A.M. Gan, D. Stan, V. Simion, E. Butoi, M. Calin, M. Simionescu, A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: up-regulation of SOCS3 expression through STAT3 activation, Biochem. Biophys. Res. Commun. 422, 321-326 (2012) [Google Scholar]
  26. C.M. Steppan, J. Wang, E.L. Whiteman, M.J. Birnbaum, M.A. Lazar, Activation of SOCS-3 by resistin, Mol. Cell Biol. 25, 1569-1575 (2005) [PubMed] [Google Scholar]
  27. Y. REN, Z.C. Zuo, T.M. Wan, Resistin: It’s role in insulin resistance and mechanism of action, Acta Physiologica Sinica, 2016, 68, 65-74 (2016) [Google Scholar]
  28. C.L. Bai, D. Luo, Y.F. Liu, S.H. Chen, Y. Liu, The preparation of resistin mature peptide and its effect on glucose and fat metabolism in pigs. Prog. Veter. Med. 34, 46-50 (2013) [Google Scholar]
  29. M. Bokarewa, I. Nagaev, L. Dahlberg, U. Smith, A. Tarkowski, Resistin, an adipokine with potent proinflammatory properties, J. Immunol. 174, 5789-5795 (2005) [CrossRef] [PubMed] [Google Scholar]
  30. A. Tarkowski, J. Bjersing, A. Shestakov, M.I. Bokarewa, Resistin competes with lipopolysaccharide for binding to toll-like receptor 4, J. Cell Mo.l Med. 14, 1419-1431 (2010) [CrossRef] [PubMed] [Google Scholar]
  31. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI. Resistin competes with lipopolysaccharide for binding to tolllike receptor 4. J Cell Mol Med 2010; 14(6B): 1419-1431. [CrossRef] [PubMed] [Google Scholar]
  32. D. Dey, M. Mukherjee, D. Basu, et al., Inhibition of insulin receptor gene expression and insulin signalling by fatty acid: interplay of PKC isoforms therein, Cell Physiol. Biochem. 16, 217-228 (2005) [CrossRef] [PubMed] [Google Scholar]
  33. K. Paz, R. Hemi, D. LeRoith, et al., A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced throsine phosphorylation, J. Biol. Chem. 272, 29911-29918 (1997) [CrossRef] [PubMed] [Google Scholar]
  34. F. Tremblay, C. Lavigne, H. Jacques, et al., Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat2 fed rats is associated with alerstions in both AKT/protein kinase B and atypical kinase C activities, Diabetes, 50, 1901-1910 (2001) [CrossRef] [PubMed] [Google Scholar]
  35. Y.Q. Yang, M.Q. Yang, Inflammatory Mechanisms in Obesity-induced Insulin Resistance, Chinese J. Biochem. Mol. Biol. 28, 692-699 (2012) [Google Scholar]
  36. M. Cnop, F. Foufelle, L.A. Velloso, Endoplasmic reticulum stress, obesity and diabetes, Trends Mol. Med. 18, 59-68 (2012) [CrossRef] [PubMed] [Google Scholar]
  37. J. Park, S.S. Choe, A.H. Choi, et al., Increase in glucose-6-phosphate dehydrogenase in adipocytes stimulates oxidative stress and inflammatory signals. Diabetes, 55, 2939-2949 (2006) [CrossRef] [PubMed] [Google Scholar]
  38. R. Vinayagamoorthi, Z. Bobby, M.G. Sridhar, Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signalling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance, J Endocrinol, 197, 287-296 (2008) [CrossRef] [PubMed] [Google Scholar]
  39. S. Furukawa, T. Fujita, M. Shimabukuro, et al., Increased oxidative stress in obesity and its impact on metabolic syndrome, J. Clin. Invest. 114, 1752-1761 (2004) [CrossRef] [PubMed] [Google Scholar]
  40. C.J. Wang, Y. Zhang, Y.F. Guan, et al., Leptin and regulation of carbohydrate and lipid metabolism, Chin. J. Biochem. Mol. Biol. 25, 896-902 (2009) [Google Scholar]
  41. W.X. Ding, Y.B. Dong, N. Ding, et al., Adiponectin protects rat heart from left ventricular remodeling induced by chronic intermittent hypoxia via inhibition of TGF-β/smad2/3 pathway, J. Thorac. Dis. 6, 1278-1284 (2014) [PubMed] [Google Scholar]
  42. T. Yamauchi, J. Kamon, H. Waki, et al., The fatderived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity, Nat. Med. 7, 941-946 (2001) [CrossRef] [PubMed] [Google Scholar]
  43. B.N. Finck, The role of the peroxisome proliferatoractivated receptor alpha pathway in pathological remodeling of the diabetic heart, Curr. Opin. Clin. Nutr. Metab. Care, 7, 391-396 (2004) [CrossRef] [PubMed] [Google Scholar]
  44. Q. Zhang, Y.J. Liu, L. Xu, et al., Influence of Adiponectin on Insulin Resistance and Ventricular Remodeling. Chinese General Practice, 19, 1401-1407 (2016) [Google Scholar]
  45. M. Awazawa, K. Ueki, K. Inabe, et al., Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6- dependent pathway, Cell Metab. 13, 401-412 (2011) [CrossRef] [PubMed] [Google Scholar]
  46. A. Fukuhara, M. Matsuda, M. Nishizawa, et al., Visfatin: a protein secreted by visceral fa that mimics the effects of insulin, Science, 307, 426-430 (2005) [Google Scholar]
  47. H.K. Song, M.H. Lee, B.K. Kim, et al., Visfatin: a new player in mesangial cell physiology and diabetic nephropathy, Am. J. Physiol-Renal, 295, F1485-F1494 (2008) [CrossRef] [Google Scholar]
  48. K. Schoonjans, G. Martin, B. Staels, et al., Peroxisome proliferator-activated receptors, orphans with ligands and functions, Curr. Opin. Lipidol. 8, 159-166 (1997) [Google Scholar]
  49. G. Gurusubramanian, V.K. Roy, Expression of visfatin in alloxan-induced diabetic rat testis, Acta Histochem. 116, 1462-1468 (2014) [Google Scholar]
  50. T. Luo, AMPK Activation by Metformin Suppresses Abnormal Adipose Tissue Extracellular Matrix Remodeling and Ameliorates Insulin Resistance in Obesity, Chongqing Med. Univ. (2016) [Google Scholar]
  51. T. Yoshida, S. Yamagishi, K. Nakamura, et al., Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product (AGE)- induced hepatic insulin resistance in vitro by suppressing Rac-1 activation, Horm. Metab. Res. 40, 620-625 (2008) [CrossRef] [PubMed] [Google Scholar]
  52. S. Crowe, L. E. Wu, C. Economou, et al., Pigment Epithelium-Derived Factor Contributes to Insulin Resistance in Obesity, Cell Metab. 10, 40-47 (2009) [CrossRef] [PubMed] [Google Scholar]
  53. J.P. Bastard, M. Maachi, J.T. van Nhieu, et al., Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro, J. Clin. Endocrinol. Metab. 87, 2084-2089 (2002) [CrossRef] [PubMed] [Google Scholar]
  54. S. Glund, A. Deshmukh, Y.C. Long, et al., Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle, Diabetes, 56, 1630-1637 (2007) [CrossRef] [PubMed] [Google Scholar]
  55. L. Dou, T. Zhao, L.L. Wang, et al., miR-200s Contribute to Interleukin-6 (IL-6)-induced Insulin Resistance in Hepatocytes, J. Biol. Chem. 31, 22596-22606 (2013) [Google Scholar]
  56. Y.M. Niu, H. Yuan, Y.H. Liu, et al., The Effect of Adiponectin and AMPK in the Process of Aerobic Exercise Improving Insulin Resistance, Chin. J. Sports Med. 28, 36-40 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.