Open Access
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 07002
Number of page(s) 7
Section Environment
Published online 22 February 2019
  1. S. Bachu, "Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change," Environ. Geol., vol. 44, no. 3, pp. 277-289, Jun. 2003. [CrossRef] [Google Scholar]
  2. IPCC, IPCC special report on carbon dioxide capture and storage. Metz, B., Davidson, O., de Coninck, H.C., Loos, M., Meyer, L.A. (Editors): Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2005. [Google Scholar]
  3. M. A. Celia and J. M. Nordbotten, "Practical Modeling Approaches for Geological Storage of Carbon Dioxide," Ground Water, vol. 47, no. 5, pp. 627-638, Sep. 2009. [CrossRef] [PubMed] [Google Scholar]
  4. D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, "An overview of current status of carbon dioxide capture and storage technologies," Renew. Sustain. Energy Rev., vol. 39, pp. 426-443, Nov. 2014. [CrossRef] [Google Scholar]
  5. A. B. Tatomir, A. Jyoti, and M. Sauter, "The Monitoring of CO2 plume migration in deep saline formations with kinetic interface sensitive tracers," in Geologic Carbon Sequestration: Understanding Reservoir Concepts, T. N. Singh and V. Vikram, Eds. Springer, 2016, p. 336. [Google Scholar]
  6. H. J. Liu, P. Were, Q. Li, Y. Gou, and Z. Hou, "Worldwide Status of CCUS Technologies and Their Development and Challenges in China," Geofluids, 2017. [Online]. Available: [Accessed: 26-Nov-2017]. [Google Scholar]
  7. P. Cook, R. Causebrook, J. Gale, K. Michel, and M. Watson, "What Have We Learned from Small-scale Injection Projects?," Energy Procedia, vol. 63, pp. 6129-6140, 2014. [Google Scholar]
  8. P. J. Cook, "CCS Research Development and Deployment in a Clean Energy Future: Lessons from Australia over the Past Two Decades," Engineering, vol. 3, no. 4, pp. 477-484, Aug. 2017. [CrossRef] [Google Scholar]
  9. B. Flemisch et al., "DuMux: DUNE for multi-{phase, component, scale, physics, ...} flow and transport in porous media," Adv. Water Resour., vol. 34, no. 9, pp. 1102-1112, Sep. 2011. [Google Scholar]
  10. A.-C. Dudu, I. Morosanu, C. S. Sava, G. Iordache, C. Avram, and S. Anghel, "CO2 geological storage possibilities in Histria Depression-Black Sea (Romania)," Geo-Eco-Mar., vol. 23, pp. 171-176, Dec. 2017. [Google Scholar]
  11. S. Anghel and C. S. Sava, "Romanian CCS Demo Project-static Modeling Activities for Storage Sites in in Oltenia Region," Energy Procedia, vol. 114, pp. 2736-2741, Jul. 2017. [Google Scholar]
  12. Global CCS Institute, Institute for Studies and Power Engineering (ISPE), "GETICA CCS Demo Project Romania: feasibility study overview report to the Global CCS Institute. Public report | Global Carbon Capture and Storage Institute," 2013. [Google Scholar]
  13. N. Trasca-Chirita et al., "CO2-EOR possibilities in Romania: A first screening for the implementation of CO2-EOR technology in Romania," vol. 23, pp. 229-232, 2017. [Google Scholar]
  14. H. Class et al., "A benchmark study on problems related to CO2 storage in geologic formations : Summary and discussion of the results (Original paper)," Comput. Geosci., vol. 13, no. 4, pp. 409-434, 2009. [Google Scholar]
  15. J. M. Nordbotten et al., "Uncertainties in practical simulation of CO2 storage," Int. J. Greenh. Gas Control, vol. 9, no. 0, pp. 234-242, Jul. 2012. [CrossRef] [Google Scholar]
  16. V. Vilarrasa, A. Tatomir, L. Tian, S. Levchenko, and F. Basirat, "Code comparison of coupled thermo-hydro-mechanical processes induced by cold CO2 injection in deep saline aquifers (to be submitted)," Comput. Geosci., p. 1, 2018. [Google Scholar]
  17. B. Flemisch et al., "Benchmarks for single-phase flow in fractured porous media," Adv. Water Resour., vol. 111, no. Supplement C, pp. 239-258, Jan. 2018. [Google Scholar]
  18. M. Y. Darcis, "Coupling models of different complexity for the simulation of CO2 storage in deep saline aquifers. Heft 218," Ph. D Thesis, University of Stuttgart, 2013. [Google Scholar]
  19. A. B. Tatomir, A. Szymkiewicz, H. Class, and R. Helmig, "Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method," CMES-Comput. Model. Eng. Sci., vol. 77, no. 2, pp. 81-111, 2011. [Google Scholar]
  20. N. Spycher and K. Pruess, "CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12-100°C and up to 600 bar," Geochim. Cosmochim. Acta, vol. 69, no. 13, pp. 3309-3320, Jul. 2005. [Google Scholar]
  21. M. Batzle and Z. Wang, "Seismic properties of pore fluids," Geophysics, vol. 57, no. 11, pp. 1396-1408, Nov. 1992. [CrossRef] [Google Scholar]
  22. R. Span and W. Wagner, "A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa," J. Phys. Chem. Ref. Data, vol. 25, no. 6, pp. 1509-1596, Nov. 1996. [Google Scholar]
  23. IAPWS, IAPWS (The International Association for the Properties of Water and Steam). Revised release on the iapws industrial formulation 1997 for the tehrmodynamic properties of water and steam. 2007. [Google Scholar]
  24. A. Fenghour, W. A. Wakeham, and V. Vesovic, "The Viscosity of Carbon Dioxide," J. Phys. Chem. Ref. Data, vol. 27, no. 1, pp. 31-44, Jan. 1998. [Google Scholar]
  25. R. H. Brooks and A. T. Corey, "Hydraulic properties of porous media," Hydrol. Pap. No 3, vol. 3, no. Colorado State University, Fort Collins, Colorado, 1964. [Google Scholar]
  26. M. T. Van Genuchten, "A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils," Soil Sci. Soc. Am., vol. 44, no. 5, Oct. 1980. [CrossRef] [Google Scholar]
  27. B. Xu, K. Nagashima, J. M. DeSimone, and C. S. Johnson, "Diffusion of Water in Liquid and Supercritical Carbon Dioxide: An NMR Study," J Phys Chem A, vol. 107, no. 1, pp. 1-3, 2002. [Google Scholar]
  28. A. Kissinger, V. Noack, S. Knopf, W. Konrad, D. Scheer, and H. Class, "Brine migration along vertical pathways due to CO2 injection-a simulated case study in the North German Basin with stakeholder involvement," Hydrol Earth Syst Sci Discuss, vol. 2016, pp. 1-33, Jun. 2016. [CrossRef] [Google Scholar]
  29. A. Kissinger, V. Noack, S. Knopf, D. Scheer, W. Konrad, and H. Class, "Characterization of reservoir conditions for CO2 storage using a dimensionless Gravitational Number applied to the North German Basin," Sustain. Energy Technol. Assess., vol. 7, pp. 209-220, Sep. 2014. [Google Scholar]
  30. A. Liebscher and U. Münch, Geological Storage of CO2-Long Term Security Aspects: GEOTECHNOLOGIEN Science Report. Springer, 2015. [CrossRef] [Google Scholar]
  31. H. Class, L. Mahl, W. Ahmed, B. Norden, M. Kühn, and T. Kempka, "Matching Pressure Measurements and Observed CO2 Arrival Times with Static and Dynamic Modelling at the Ketzin Storage site," Energy Procedia, vol. 76, pp. 623-632, Aug. 2015. [Google Scholar]
  32. T. Kempka et al., "A Dynamic Flow Simulation Code Intercomparison based on the Revised Static Model of the Ketzin Pilot Site," Energy Procedia, vol. 40, pp. 418-427, 2013. [Google Scholar]
  33. L. Walter, P. J. Binning, S. Oladyshkin, B. Flemisch, and H. Class, "Brine migration resulting from CO2 injection into saline aquifers-An approach to risk estimation including various levels of uncertainty," Int. J. Greenh. Gas Control, vol. 9, pp. 495-506, Jul. 2012. [CrossRef] [Google Scholar]
  34. A. Tasianas, L. Mahl, M. Darcis, S. Buenz, and H. Class, "Simulating seismic chimney structures as potential vertical migration pathways for CO2 in the Snøhvit area, SW Barents Sea: model challenges and outcomes," Environ. Earth Sci., vol. 75, no. 6, p. 504, Mar. 2016. [Google Scholar]
  35. M. Beck, G. Seitz, and H. Class, "Volume-Based Modelling of Fault Reactivation in Porous Media Using a Visco-Elastic Proxy Model," Transp. Porous Media, vol. 114, no. 2, pp. 505-524, Sep. 2016. [Google Scholar]
  36. J. Rutqvist, A. P. Rinaldi, F. Cappa, and G. J. Moridis, "Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs," J. Pet. Sci. Eng., vol. 107, pp. 31-44, Jul. 2013. [Google Scholar]
  37. A. B. Tatomir, I. Tomac, and M. Sauter, "A Parametric Sensitivity Study on CO2 Injection in Deep Saline Aquifers Accounting for Hydro-mechanical Microfracturing," presented at the 1st International Conference on Energy Geotechnics ICEGT, Kiel, Germany, 2016, vol. Energy Geotechnics, pp. 223-230. [Google Scholar]
  38. A. Niemi et al., "Heletz experimental site overview, characterization and data analysis for CO2 injection and geological storage," Int. J. Greenh. Gas Control, 2016. [Google Scholar]
  39. A. B. Tatomir et al., "An integrated core-based analysis for the characterization of flow, transport and mineralogical parameters of the Heletz pilot CO2 storage site reservoir," Int. J. Greenh. Gas Control, vol. 48, Part 1, pp. 24-43, May 2016. [CrossRef] [Google Scholar]
  40. A. Tatomir, "From discrete to continuum concepts of flow in fractured porous media," University of Stuttgart, Stuttgart University, 2012. [Google Scholar]
  41. D. Gläser, R. Helmig, B. Flemisch, and H. Class, "A discrete fracture model for two-phase flow in fractured porous media," Adv. Water Resour., vol. 110, pp. 335-348, Dec. 2017. [Google Scholar]
  42. T. D. Ngo, A. Fourno, and B. Noetinger, "Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software," J. Hydrol., vol. 554, no. Supplement C, pp. 66-79, Nov. 2017. [CrossRef] [Google Scholar]
  43. N. Schwenck, "An XFEM-based model for fluid flow in fractured porous media," University of Stuttgart, 2015. [Google Scholar]
  44. J. Hommel., et al. "A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments," Water Resour. Res., vol. 51, no. 5, pp. 3695-3715, May 2015. [Google Scholar]
  45. J. Hommel, E. Coltman, and H. Class, "Porosity-Permeability Relations for Evolving Pore Space: A Review with a Focus on (Bio-)geochemically Altered Porous Media," Transp. Porous Media, vol. 124, no. 2, pp. 589-629, Sep. 2018. [Google Scholar]
  46. A. Tatomir et al., "Kinetic Interface Sensitive Tracers-experimental validation in a two-phase flow column experiment. A proof of concept," Water Resour. Res., vol. doi:10.1029/2018WR022621, Oct. 2018. [Google Scholar]
  47. A. B. Tatomir et al., "Novel approach for modeling kinetic interface-sensitive (KIS) tracers with respect to time-dependent interfacial area change for the optimization of supercritical carbon dioxide injection into deep saline aquifers," Int. J. Greenh. Gas Control, vol. 33, pp. 145-153, Feb. 2015. [CrossRef] [Google Scholar]
  48. S. Bachu, "Review of CO2 storage efficiency in deep saline aquifers," Int. J. Greenh. Gas Control, vol. 40, pp. 188-202, Sep. 2015. [CrossRef] [Google Scholar]
  49. K. Pruess et al., "Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2," Energy, vol. 29, no. 9, pp. 1431-1444, Jul. 2004. [CrossRef] [Google Scholar]
  50. O. Kolditz et al., "A systematic benchmarking approach for geologic CO2 injection and storage," Environ. Earth Sci., vol. 67, Sep. 2012. [Google Scholar]
  51. I. Berre et al., "Call for participation: Verification benchmarks for single-phase flow in three-dimensional fractured porous media," 18-Sep-2018. [Online]. Available: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.