Open Access
Issue
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 08003
Number of page(s) 7
Section Other Topics in Built Environment
DOI https://doi.org/10.1051/e3sconf/20198508003
Published online 22 February 2019
  1. RT, "La RT2012 : un saut énergétique pour les bâtiments neufs-Ministère de l’Environnement, de l’Energie et de la Mer," (2012) [Google Scholar]
  2. :: "United Nations Environment Programme (UNEP)-SBCI ::." [Online]. Available: http://www.unep.org/sbci/. [Accessed: 15-Dec-2016]. [Google Scholar]
  3. F. D’Alessandro, F. Asdrubali, and G. Baldinelli, "Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wires," Constr. Build. Mater., vol. 68, pp. 277-284, (2014) [CrossRef] [Google Scholar]
  4. F. Asdrubali, F. D’Alessandro, and S. Schiavoni, "A review of unconventional sustainable building insulation materials," Sustain. Mater. Technol., vol. 4, pp. 1-17, (2015) [Google Scholar]
  5. F. Collet, "Caractérisation hydrique et thermique de matériaux de génie civil à faibles impacts enivoronnementaux," Instittut National des Sciences Appliquées de Rennes, (2004) [Google Scholar]
  6. V. Cerezo, "Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales : approche expérimentale et modélisation théorique," Institut National des Sciences Appliquées de Lyon, Ecole Nationale des Travaux Publics de l’Etat, (2005) [Google Scholar]
  7. S. Elfordy, F. Lucas, F. Tancret, Y. Scudeller, and L. Goudet, "Mechanical and thermal properties of lime and hemp concrete (‘hempcrete’) manufactured by a projection process," Constr. Build. Mater., vol. 22, no. 10, pp. 2116-2123, (2008) [CrossRef] [Google Scholar]
  8. D. Lelievre, T. Colinart, and P. Glouannec, "Hygrothermal behavior of bio-based building materials including hysteresis effects: Experimental and numerical analyses," Energy Build., vol. 84, pp. 617-627, Dec. (2014) [CrossRef] [Google Scholar]
  9. Y. Ait Ouméziane, "Evaluation des performances hygrothermiques d’une paroi par simulation numérique : application aux parois en béton de chanvre," INSA de Rennes, (2013) [Google Scholar]
  10. G. Promis, O. Douzane, A. D. Tran Le, and T. Langlet, "Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state," Energy Build., vol. 166, pp. 450-459, May (2018) [CrossRef] [Google Scholar]
  11. T. Colinart, P. Glouannec, M. Bendouma, and P. Chauvelon, "Temperature dependence of sorption isotherm of hygroscopic building materials. Part 2: Influence on hygrothermal behavior of hemp concrete," Energy Build., vol. 152, pp. 42-51, Oct. (2017) [CrossRef] [Google Scholar]
  12. A. D. T. Le, D. Samri, M. Rahim, O. Douzane, G. Promis, and T. Langlet, "Effect of Temperature-dependent Sorption Characteristics on The Hygrothermal Behavior of Hemp Concrete," Energy Procedia, vol. 78, pp. 1449-1454, (2015) [CrossRef] [Google Scholar]
  13. A. D. Tran Le, "Etude des transferts hygrothermiques dans le béton de chanvre et leur application au bâtiment," Université de Reims-Champagne-Ardenne, (2010) [Google Scholar]
  14. M. Künzel Hartwig, Simultaneous Heat and Moisture Transport in Building Components: One and two dimentional calculation using simple parameters. Suttgart, (1995) [Google Scholar]
  15. N. Mendes, I. Ridley, P. C. Philippi, and K. Budag, "Umidus: a PC Program For The Prediction Of Heat And Mass Transfer In Porous Building Elements," Kyoto, Japan: Building Simulation’99 Conference, 1999: 1-7. [Google Scholar]
  16. J. R. Philip and D. A. De Vries, "Moisture movement in porous materials under temperature gradients," Trans. Am. Geophys. Union, vol. 38, no. 2, p. 222, (1957) [CrossRef] [Google Scholar]
  17. Kerestecioglu A. and Gu L., "Incorporation of the effective penetration depth theory into TRNSYS," Draft Report, Florida Solar Energy Center, Cape Canaveral, FL., (1989) [Google Scholar]
  18. W.C Burch D.M and Thomas, "An analysis of moisture accumulation in a wood frame wall subjected to winter climate," National Institute of Standards and Technololgy., (1991) [Google Scholar]
  19. A. Ozaki, T. Watanabe, T. Hayashi, and Y. Ryu, "Systematic analysis on combined heat and water transfer through porous materials based on thermodynamic energy," Energy Build., vol. 33, no. 4, pp. 341-350, Apr. (2001) [CrossRef] [Google Scholar]
  20. P. Crausse, J.. Laurent, and B. Perrin, "Influence des phénomènes d’hystérésis sur les propriétés hydriques de matériaux poreux: Comparaison de deux modèles de simulation du comportement thermohydrique de parois de bâtiment," Rev. Générale Therm., vol. 35, no. 410, pp. 95-106, (1996) [CrossRef] [Google Scholar]
  21. F. Collet, M. Bart, L. Serres, and J. Miriel, "Porous structure and water vapour sorption of hemp-based materials," Constr. Build. Mater., vol. 22, no. 6, pp. 1271-1280, (2008) [CrossRef] [Google Scholar]
  22. Y. Mualem, "A conceptual model of hysteresis," Water Resour. Res., vol. 10, no. 3, pp. 514-520, Jun. (1974) [CrossRef] [Google Scholar]
  23. J. B. Kool and J. C. Parker, "Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties," Water Resour. Res., vol. 23, no. 1, pp. 105-114, (1987) [CrossRef] [Google Scholar]
  24. C. R. Pedersen, "Transient calculation on moisture migration using a simplified description of hysteresis in the sorption isotherms," Proc. 2nd Symp. Build. Phys. Nord. Ctries., no. Technical University of Norway, Trondheim, Norway., (1990) [Google Scholar]
  25. H.-J. Steeman, "Modelling local hygrothermal interaction between airflow and porous materials for building applications", dissertation, Ghent University, (2009). [Google Scholar]
  26. M. Van Belleghem, H.-J. Steeman, M. Steeman, A. Janssens, and M. De Paepe, "Sensitivity analysis of CFD coupled non-isothermal heat and moisture modelling," Build. Environ., vol. 45, no. 11, pp. 2485-2496, (2010) [CrossRef] [Google Scholar]
  27. D. Samri, "Analyse physique et caractérisation hygrothermique des matériaux de construction", PhD INSA de Lyon, (2008) [Google Scholar]
  28. D. Lelievre, "Simulation numérique des transferts de chaleur et d’humidité dans une paroi multicouche de bâtiment en matériaux biosourcés", Université Bretagne-Sud, (2015) [Google Scholar]
  29. K. K. Hansen, "Sorption Isotherms. A Catalogue," Copenhagen, (1986) [Google Scholar]
  30. Y. Aït Oumeziane, S. Moissette, M. Bart, and C. Lanos, "Influence of temperature on sorption process in hemp concrete," Constr. Build. Mater., vol. 106, pp. 600-607, (2016) [Google Scholar]
  31. C. Rode and C. O. Clorius, "Modeling of Moisture Transport in Wood with Hysteresis and Temperature-Dependent Sorption Characteristics," in ASHRAE, (2004) [Google Scholar]
  32. S. Poyet and S. Charles, "Temperature dependence of the sorption isotherms of cement-based materials: Heat of sorption and Clausius-Clapeyron formula," Cem. Concr. Res., vol. 39, no. 11, pp. 1060-1067, (2009) [Google Scholar]
  33. E. F. Sowell and P. Haves, "Efficient solution strategies for building energy system simulation," Build. Phys., vol. 33, pp. 309-317,(2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.