Open Access
E3S Web Conf.
Volume 89, 2019
The 2018 International Symposium of the Society of Core Analysts (SCA 2018)
Article Number 04003
Number of page(s) 8
Section Displacement Mechanisms / EOR
Published online 29 March 2019
  1. K.J. Webb, C.J.J. Black and H. Al-Ajeel, Low Salinity Oil Recovery - Log-Inject-LogPaper SPE 89379 presented at the SPE/DOE Improved Oil Recovery SymposiumTulsa, Oklahoma, USA17-21 April. (2004). [Google Scholar]
  2. Yousef A.A.,Liu J.S.andBlanchard G.W.Paper SPE 159526 presented at the SPE Annual Technical Conference and ExhibitionSan Antonio, Texas, USA8–10 October,SmartWater Flooding: Industry’s First Field Test in Carbonate Reservoirs, (2012). [Google Scholar]
  3. M. Wolthers, L. Charlet and P. Van Cappellen, The Surface Chemistry of Divalent Metal Carbonate Minerals; a Critical Assessment of Surface Charge and Potential Data Using the Charge Distribution Multi-site Ion Complexation Model. American Journal of Science, 308(8), 905 (2008). [Google Scholar]
  4. S. Strand and T. Austad, Effect of Temperature on Enhanced Oil Recovery from Mixed- wet Chalk Cores by Spontaneous Imbibition and Forced Displacement using Seawater. Energy & Fuels, 22(5), 3222 (2008). [CrossRef] [Google Scholar]
  5. M.B. Alotaibi and H.A. Nasr-El-Din, Electrokinetics of Limestone Particles and Crude-Oil Droplets in Saline Solutions. SPE Reservoir Evaluation & Engineering, 14(5), 604–611 (2011). [CrossRef] [Google Scholar]
  6. A.A. Yousef, S.H. Al-Saleh, A.O. Al-Kaabi, et al., Laboratory Investigation of the Impact of Injection-Water Salinity and Ionic Content on Oil Recovery from Carbonate Reservoirs. SPE Reservoir Evaluation & Engineering, 14(5), 578 (2011). [CrossRef] [Google Scholar]
  7. H.B. Aguiar, “Vibrational Sum-Frequency Scattering Studies of Oil-in-Water Emulsions”., École Polytechnique Fédérale de Lausanne, SwazilandDissertation (2011). [Google Scholar]
  8. A.B. Andrews, A. McClelland, O. Korkeila, A. Demidov, A. Krummel, O.C. Mullins and Z. Chen, “Molecular Orientation of Asphaltenes and PAH Model Compounds in Langmuir-Blodgett Films using Sum Frequency Generation Spectroscopy”. Langmuir, Vol. 10, 6049 (2011). [Google Scholar]
  9. Andersen A.,“Surfactants Dynamics at Interfaces a Series of Second Harmonic Generation Experiments”. (University PotsdamGermany2006)Dissertation. [Google Scholar]
  10. D.E. Gragson and G.L. Richmond, “Comparisons of the Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation”. Langmuir, Vol. 13, 4804 (1997). [Google Scholar]
  11. J.K. Hensel, A.P. Carpenter, R.K. Ciszewski, B.K. Schabes, C.T. Kittredge, F.G. Moore and G.L. Richmond, “Molecular Characterization of Water and Surfactant AOT at Nanoemulsion Surfaces”. PNAS, Vol. 114, 13351 (2017). [CrossRef] [Google Scholar]
  12. K. Laß and G. Friedrichs, “Revealing Structural Properties of the Marine Nanolayer from Vibrational Sum Frequency Generation Spectra”. J. Geophys. Res., Vol. 116, C08042 (2011). [Google Scholar]
  13. D. Hu and K.C. Chou, “Surface Charge at the Bitumen/Water Interface Investigated by Phase-Sensitive Sum Frequency Generation Vibrational Spectroscopy: Effects of pH, Ions, and Surfactants”. Energy Fuel, 29, 7885–7888 (2015). [CrossRef] [Google Scholar]
  14. S. Watanabe, M. Nakano, K. Miyake and S. Sasaki, “Analysis of the Interfacial Molecular Behavior of a Lubrication Film of n-dodecane Containing Stearic Acid under Lubricating Conditions by Sum Frequency Generation Spectroscopy”. Langmuir, Vol. 32, 13649 (2016). [CrossRef] [PubMed] [Google Scholar]
  15. O. Esenturk and R.A. Walker, “Surface Vibrational Structure at Alkane Liquid/Vapor Interfaces”. J. Chem. Phys., Vol. 125, 174701 (2006). [Google Scholar]
  16. C.D. Bain, P.B. Davies, T.H. Ong, R.N. Ward and M.A. Brown, “Quantitative Analysis of Monolayer Composition by Sum-Frequency Vibrational Spectroscopy”. Langmuir, Vol. 7, 1563 (1991). [Google Scholar]
  17. J.H. Jang, J. Jacob, G. Santos, T.R. Lee and S. Baldelli, “Image Contrast in Sum Frequency Generation Microscopy Based on Monolayer Order and Coverage”. J. Phys. Chem. C., Vol. 117, 15192 (2013). [CrossRef] [Google Scholar]
  18. G.L. Richmond, “Structure and Bonding of Molecules at Aqueous Surface”. Annu. Rev. Phys. Chem., Vol. 52, 357 (2001). [CrossRef] [PubMed] [Google Scholar]
  19. K.M. Callahan, N.N. Casillas-Ituarte, M. Xu, M. Roseslová, H.C. Allen and D.J. Tobias, “Effect of Magnesium Cation on the Interfacial Properties of Aqueous Salt Solutions”. J. Phys. Chem. A, Vol. 114, 8359 (2010). [CrossRef] [PubMed] [Google Scholar]
  20. H. Fang, W. Wu, Y. Sang, S. Chen, X. Zhu, L. Zhang, Y. Niu and W. Gan, “Evidence of the Adsorption of Hydroxide Ion at Hexadecane/Water Interface from Second Harmonic Generation Study”. RSC Adv., Vol. 5, 23578 (2015). [Google Scholar]
  21. C.Y. Tang, Z. Huang and H.C. Allen, “Interfacial Water Structure and Effects of Mg2+ and Ca2+ Binding to the COOH Headgroup of a Palmitic Acid Monolayer Studied by Sum Frequency Spectroscopy“. J. Phys. Chem. B, Vol. 115, 34 (2011). [CrossRef] [PubMed] [Google Scholar]
  22. Beaman D.K.,“Vibrational Sum-Frequency Spectroscopy Investigations of Carboxylic acid based Surfactants and Polymers at the Oil-Water Interface” University of Oregon,USA(2010)Dissertation. [Google Scholar]
  23. P.A. Covert and D. K. Hore, “Geochemical Insight from Nonlinear Optical Studies of Mineral - Water Interfaces”. Annu. Rev. Phys. Chem., Vol. 67, 233 (2016). [CrossRef] [PubMed] [Google Scholar]
  24. D. Liu, G. Ma, L.M. Levering and H.C. Allen, “Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces: Observation of Increased Interfacial Depth”. J. Phys. Chem. B., Vol. 108, 2252 (2004). [Google Scholar]
  25. Z. Huang, “Studies using Vibrational Sum Frequency Generation Spectroscopy: I. Salty Glycerol versus Salty Water Surface Organization: Bromide and Iodide Surface Propensities II. Influence of Salt Purity on Na+ and Palmitic Acid Interactions”., Ohio State University, USADissertation (2013). [Google Scholar]
  26. D. Hu, “Studies of Charged Molecules at the Air/Water Interface by Sum Frequency Generation Vibrational Spectroscopy”., The University of British Columbia, CanadaDissertation (2016). [Google Scholar]
  27. W. Gan, W. Wu, F. Yang, D. Hu, H. Fang, Z. Lan and Q. Yuan, “The Behavior of Hydroxide and Hydronium Ions at the Hexadecane-Water Interface Studied with Second Harmonic Generation and Zeta Potential Measurements”. Soft Matter, Vol. 13, 7962 (2017). [CrossRef] [PubMed] [Google Scholar]
  28. Y.R. Shen and V. Ostroverkhov, “Sum-Frequency Vibrational Spectroscopy on Water Interfaces: Polar Orientation of Water Molecules at Interfaces”. Chem. Rev., Vol. 106, 1140 (2006). [CrossRef] [PubMed] [Google Scholar]
  29. J. Beattie and A.M. Djerdjev, “The Pristine Oil/water Interface: Surfactant-free Hydroxide- charged Emulsions”. Angew Chem Int Ed, 43(27), 3568 (2004). [CrossRef] [Google Scholar]
  30. F.G. Moore and G.L. Richmond, “Integration or Segregation: How Do Molecules Behave at Oil/Water Interfaces? Accounts of Chemical Research”, Vol. 41, 739 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.