Open Access
E3S Web Conf.
Volume 89, 2019
The 2018 International Symposium of the Society of Core Analysts (SCA 2018)
Article Number 04002
Number of page(s) 7
Section Displacement Mechanisms / EOR
Published online 29 March 2019
  1. R. Lenormand, E. Touboul and C. Zarcone, Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech., 189, 165–187 (1988). [Google Scholar]
  2. C. Zhang, M. Oostrom, T.W. Wietsma, J.W. Grate and M.G. Warner, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuel, 25(8), 3493–3505 (2011). [Google Scholar]
  3. B. Zhao, C.W. MacMinn and R. Juanes, Wettability control on multiphase flow in patterned microfluidics. Proc. Nat. Acad. Sci., 113(37), 10251–10256 (2016). [CrossRef] [Google Scholar]
  4. W. Xu, J.T. Ok, F. Xiao, K.B. Neeves and X. Yin, Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Phys. Fluids, 26(9), 093102 (2014). [CrossRef] [Google Scholar]
  5. C. Cottin, H. Bodiguel and A. Colin, Drainage in two-dimensional porous media: From capillary fingering to viscous flow. Phys. Rev. E, 82(4), 046315 (2010). [Google Scholar]
  6. X. Zheng, N. Mahabadi, T.S. Yun and J. Jang, Effect of capillary and viscous forces on CO2 saturation and invasion pattern in microfluidic chip. J. Geophys. Res. Solid Earth, 122, 1634–1647 (2017). [Google Scholar]
  7. D. Wilkinson and J.F. Willemsen, Invasion percolation: a new form of percolation theory. J. Phys. A: Math. Gen., 16(14), 3365 (1983). [CrossRef] [MathSciNet] [Google Scholar]
  8. G.M. Homsy, Viscous fingering in porous media. Annu. Rev. Fluid. Mech., 19(1), 271–311 (1987). [Google Scholar]
  9. Y. Tanino, M. Christensen and X. Zacarias Hernandez, Residual oil saturation under mixed-wet conditions: a direct comparison between Indiana limestone and its microfluidic analogue.., Proc. International Symposium of the Society of Core Analysts, 27 Aug. -1 Sept.SCA2017-009Vienna, Austria (2017). [Google Scholar]
  10. Y. Tanino, X. Zacarias-Hernandez and M. Christensen, Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement. Exp. Fluids, 59(2), (2018). [Google Scholar]
  11. S.A. Bowden, Y. Tanino, B. Akamairo and M. Christensen, Recreating mineralogical petrographic heterogeneity within microfluidic chips: assembly, examples, and applications. Lab Chip, 16(24), 4677–4681 (2016). [CrossRef] [PubMed] [Google Scholar]
  12. Y. Tanino and M.J. Blunt, Capillary trapping in sandstones and carbonates: Dependence on pore structure. Water Resour. Res., 48(8), (2012). [Google Scholar]
  13. Y. Tanino and M.J. Blunt, Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resour. Res., 49(7), 4311–4319 (2013). [Google Scholar]
  14. M. Christensen and Y. Tanino, Enhanced permeability due to apparent oil/brine slippage in limestone and its dependence on wettability. Geophys. Res. Lett., 44(12), (2017). [Google Scholar]
  15. M. Christensen and Y. Tanino, Waterflood oil recovery from mixed-wet limestone: dependence on contact angle. Energy Fuel, 31(2), 1529–1535 (2017). [CrossRef] [Google Scholar]
  16. M. Christensen, X. Zacarias-Hernandez and Y. Tanino, Secondary drainage under mixed-wet conditions: crossover from stable displacement to capillary fingering in a microfluidic packed bed., Adv. Water Res., under revision, (2018). [Google Scholar]
  17. L. Romanello, Impact of wettability on relative permeability, MSc thesis., University of Aberdeen (2015). [Google Scholar]
  18. S.A. Bowden, J.M. Cooper, F. Greub, D. Tambo and A. Hurst, Benchmarking methods of enhanced heavy oil recovery using a microscaled bead-pack. Lab Chip, 10(7), 819–823 (2010). [CrossRef] [PubMed] [Google Scholar]
  19. O.I. FretteK. J.M̊aløyJ. SchmittbuhlA. Hansen, Immiscible displacement of viscosity-matched fluids in two-dimensional porous media. Phys. Rev. E, 55(3), 2969 (1997). [Google Scholar]
  20. M. Christensen and Y. Tanino, Residual oil saturation under mixed-wet conditions: optimal wettability revisited,.Proc. International Symposium of the Society of Core AnalystsSCA2018-011., Trondheim, Norway (2018). [Google Scholar]
  21. R. Brooks and T. Corey, Hydraulic properties of porous media,3., Colorado State University Hydrology Papers (1964). [Google Scholar]
  22. M. Singh and K.K. Mohanty, Dynamic modeling of drainage through three-dimensional porous materials. Chem. Eng. Sci., 58(1), 1–18 (2003). [Google Scholar]
  23. I. Chatzis and N.R. Morrow, Correlation of capillary number relationships for sandstone. Soc. Petrol. Eng. J., 24(05), 555–562 (1984). [CrossRef] [Google Scholar]
  24. Y.Tanino,Akamairo B.,Christensen M.andBowden S.A.,Impact of displacement rate on waterflood oil recovery under mixed-wet conditionsProc., International Symposium of the Society of Core AnalystsSt. John’s Newfoundland and Labrador, Canada16–21 Aug.. (2015). [Google Scholar]
  25. H. Tie and N.R. Morrow, Low-flood-rate residual saturations in carbonate rocks, Proc., International Petroleum Technology Conference21–23 Nov.., Doha, Qatar (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.