Open Access
Issue
E3S Web Conf.
Volume 90, 2019
7th Conference on Emerging Energy and Process Technology (CONCEPT 2018)
Article Number 01002
Number of page(s) 10
Section Sustainable Energy
DOI https://doi.org/10.1051/e3sconf/20199001002
Published online 02 April 2019
  1. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress In Electrical Energy Storage System: A Critical Review. Progress in Natural Science, 19(3), 291–312, (2009). [CrossRef] [Google Scholar]
  2. C. Song, R. Hui, J. Zhang, High-temperature PEM Fuel Cell Catalysts and Catalyst Layers. PEMFuel Cell Electrocatalysis and Catalyst Layers, 2, 861–888, (2008). [CrossRef] [Google Scholar]
  3. S. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review Of The Proton Exchange Membranes For Fuel Cell Applications. International Journal Of Hydrogen Energy, 35(17), 9349–9384, (2010). [Google Scholar]
  4. J. Asensio, E. Sanchez, P. Gomez-Romero, Chemlnform Abstract: Proton-Conducting Membranes Based On Benzimidazole Polymers For High-Temperature PEM Fuel Cells. A Chemical Quest. Cheminform, 39, 3210–3239, (2010). [Google Scholar]
  5. R. Rosli, A. Sulong, W. Daud, M. Zulkifley, T. Husaini, M. Rosli, A Review Of High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) System. International Journal of Hydrogen Energy, 42(14), 9293–9314, (2017). [Google Scholar]
  6. Q. Li, R. He, J. Jensen, N. Bjerrum, PBI-Based Polymer Membranes for High Temperature Fuel Cells- Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells, 4(3), 147–159, (2004). [CrossRef] [Google Scholar]
  7. S. Bose, T. Kuila, T. Nguyen, N. Kim, K. Lau, J. Lee, Polymer Membranes For High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances And Challenges. Progress in Polymer Science, 36(6), 813–843, (2011). [Google Scholar]
  8. F. Zhou, Degradation Of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell Under Stressed Operating Conditions : Effect of Start/Stop Cycling, Impurities Poisoning and H2 Starvation. Department of Energy Technology, Aalborg University (Doctoral dissertation), (2015). [Google Scholar]
  9. C. Xu, Y. Cao, R. Kumar, X. Wu, X. Wang, K. Scott, A Polybenzimidazole/Sulfonated Graphite Oxide Composite Membrane For High Temperature Polymer Electrolyte Membrane Fuel Cells.Journal Of Materials Chemistry, 21(30), 11359, (2011). [Google Scholar]
  10. A. Leykin, A. Askadskii, V. Vasilev, A. Rusanov, Dependence Of Some Properties Of Phosphoric Acid Doped Pbis On Their Chemical Structure.Journal of Membrane Science, 347(1-2), 69–74, (2010). [Google Scholar]
  11. M. Berber, T. Fujigaya, K. Sasaki, N. Nakashima, Remarkably Durable High Temperature Polymer Electrolyte Fuel Cell Based on Poly (vinylphosphonic acid)-doped Polybenzimidazole. Scientific Reports, 3(1), 1764, (2013). [Google Scholar]
  12. X. Li, Structure-Property Relationships In Polybenzimidazole Materials For Gas Separation And Fuel Cell Applications. (Doctoral dissertation), (2014). [Google Scholar]
  13. H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Performance Investigation Of Membrane Electrode Assemblies For High Temperature Proton Exchange Membrane Fuel Cell. Journal of Power and Energy Engineering, 01(05), 95–100, (2013). [CrossRef] [Google Scholar]
  14. S. Chen, H. Pan, Z. Chang, M. Jin, H. Pu, Synthesis And Study Of Pyridine-Containing Sulfonated Polybenzimidazole Multiblock Copolymer For Proton Exchange Membrane Fuel Cells. Ionics, 1–11, (2018). [Google Scholar]
  15. M.M. Nasef, T. Fujigaya, E. Abouzari-Lotf, N. Nakashima, Electrospinning Of Poly(Vinylpyrrodine) Template For Formation Of Zro2 Nanoclusters For Enhancing Properties Of Composite Proton Conducting Membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 66 (6), 289–298, (2017). [CrossRef] [Google Scholar]
  16. M.M. Nasef, T. Fujigaya, E. Abouzari-Lotf, N. Nakashima, Z. Yang, Enhancement Of Performance Of Pyridine Modified Polybenzimidazole Fuel Cell Membranes Using Zirconium Oxide Nanoclusters And Optimized Phosphoric Acid Doping Level. International Journal of Hydrogen Energy, 41 (16), 6842–6854, (2016). [Google Scholar]
  17. L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E. Choe, Synthesis And Characterization Of Pyridine-Based Polybenzimidazoles For High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Fuel Cells, 5(2), 287–295, (2005). [CrossRef] [Google Scholar]
  18. J. Yang, Y. Xu, L. Zhou, Q. Che, R. He, Q. Li, Hydroxyl Pyridine Containing Polybenzimidazole Membranes For Proton Exchange Membrane Fuel Cells. Journal Of Membrane Science, 446, 318–325, (2013). [Google Scholar]
  19. E. Quartarone, S. Angioni, P. Mustarelli, Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(12), 687, (2017). [CrossRef] [Google Scholar]
  20. F. Liu, S. Wang, J. Li, X. Tian, X. Wang, H. Chen, Z. Wang, Polybenzimidazole/Ionic-Liquid-Functional Silica Composite Membranes With Improved Proton Conductivity For High Temperature Proton Exchange Membrane Fuel Cells. Journal of Membrane Science, 541, 492–499, (2017). [Google Scholar]
  21. F.J. Pinar, P. Canizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium Composite PBI-Based Membranes For High Temperature Polymer Electrolyte Membrane Fuel Cells. Effect On Titanium Dioxide Amount. RSC Advances, 2(4), 1547–1556, (2012). [Google Scholar]
  22. J. Yang, C. Liu, L. Gao, J. Wang, Y. Xu, R. He, Novel Composite Membranes Of Triazole Modified Graphene Oxide And Polybenzimidazole For High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. RSC Advances, 5 (122), 101049–101054, (2015). [Google Scholar]
  23. K.J. Peng, J.Y. Lai, Y.L. Liu, Nanohybrids Of Graphene Oxide Chemically-Bonded With Nafion: Preparation And Application For Proton Exchange Membrane Fuel Cells. Journal of Membrane Science, 514, 86–94, (2016). [Google Scholar]
  24. M.M. Hasani-Sadrabadi, E. Dashtimoghadam, F.S. Majedi, H. Moaddel, A. Bertsch, P. Renaud, Superacid-Doped Polybenzimidazole-Decorated Carbon Nanotubes: A Novel High-Performance Proton Exchange Nanocomposite Membrane. Nanoscale, 5 (23), 11710–11717, (2013). [Google Scholar]
  25. S. Maity, S. Singha, T. Jana, Low Acid Leaching PEM For Fuel Cell Based On Polybenzimidazole Nanocomposites With Protic Ionic Liquid Modified Silica. Polymer, 66, 76–85, (2015). [Google Scholar]
  26. X. Chen, G. Qian, M. Molleo, B. Benicewicz, H. Ploehn, High Temperature Creep Behavior Of Phosphoric Acid-Polybenzimidazole Gel Membranes. Journal Of Polymer Science Part B: Polymer Physics, 53(21), 1527–1538, (2015). [CrossRef] [Google Scholar]
  27. L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E. Choe, D. Rogers, High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process. Chemistry Of Materials, 17(21), 5328–5333, (2005). [CrossRef] [Google Scholar]
  28. F. Mack, S. Galbiati, V. Gogel, L. Jorissen, R. Zeis, Evaluation of Electrolyte Additives for High-Temperature Polymer Electrolyte Fuel Cells. Chemelectrochem, 3(5), 770–773. (2016). [Google Scholar]
  29. X. Gang, Electrolyte Additives for Phosphoric Acid Fuel Cells. Journal Of The Electrochemical Society, 140(4), 896, (1993). [Google Scholar]
  30. M. Enayetullah, E. O’Sullivan, E. Yeager, Oxygen Reduction On Platinum In Mixtures Of Phosphoric And Trifluoromethane Sulphonic Acids. Journal Of Applied Electrochemistry, 18(5), 763–767, (1988). [Google Scholar]
  31. E. Abouzari-Lotf, M. Zakeri, M. Nasef, M. Miyake, P. Mozarmnia, N. Bazilah, N., Emelin, and A. Ahmad, Highly Durable Polybenzimidazole Composite Membranes with Phosphonated Graphene Oxide for High Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 412, 238–245, (2018). [Google Scholar]
  32. M. Etesami, E. Abouzari-Lotf, A. Ripin, M. Mahmoud Nasef, T.M. Ting, A. Saharkhiz, A. Ahmad, Phosphonated Graphene Oxide with High Electrocatalytic Performance for Vanadium Redox Flow Battery. Int. J. Hydrogen Energy, 43 (1), 189–197, (2018) [Google Scholar]
  33. M. Zakeri, E. Abouzari-Lotf, M. Miyake, S. Mehdipour-Ataei, K. Shameli, Phosphoric Acid Functionalized Graphene Oxide: A Highly Dispersible Carbon-Based Nanocatalyst for The Green Synthesis of Bio-Active Pyrazoles, Arabian. J. Chem, (2017), [Google Scholar]
  34. J. Dong, Z. Yao, T. Yang, L. Jiang, C. Shen, Control of Superhydrophilic and Superhydrophobic Graphene Interface, Sci. Rep. 3, 1733, (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.