Open Access
E3S Web Conf.
Volume 90, 2019
7th Conference on Emerging Energy and Process Technology (CONCEPT 2018)
Article Number 01003
Number of page(s) 12
Section Sustainable Energy
Published online 02 April 2019
  1. Fricke, J. and T. Tillotson, Aerogels: production, characterization, and applications. Thin Solid Films, 1997. 297(1): p. 212–223. [Google Scholar]
  2. Akimov, Y.K., Fields of Application of Aerogels (Review). Instruments and Experimental Techniques, 2003. 46(3): p. 287–299. [Google Scholar]
  3. Yin, W. and D.A. Rubenstein, Biomedical Applications of Aerogels, in Aerogels Handbook, M.A. Aegerter, N. Leventis, and M.M. Koebel, Editors. 2011, Springer New York: New York, NY. p. 683–694. [Google Scholar]
  4. Gurav, J.L., et al., Silica Aerogel: Synthesis and Applications. Journal of Nanomaterials, 2010. 2010: p. 11. [Google Scholar]
  5. Nicola, H. and S. Ulrich, Aerogels-Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition, 1998. 37(1-2): p. 22–45. [CrossRef] [Google Scholar]
  6. Mi, X., et al., Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon, 2012. 50(13): p. 4856–4864. [Google Scholar]
  7. Sui, Z., et al., Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry, 2012. 22(18): p. 8767–8771. [Google Scholar]
  8. Guo, F., et al., Highly stretchable carbon aerogels. Nature Communications, 2018. 9(1): p. 881. [CrossRef] [PubMed] [Google Scholar]
  9. Chen, C., et al., Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chemical Engineering Journal, 2018. 350: p. 173–180. [CrossRef] [Google Scholar]
  10. Ge, X., et al., High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohydrate Polymers, 2018. 197: p. 277–283. [CrossRef] [PubMed] [Google Scholar]
  11. Garcia-Gonzalez, C.A., et al., Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydrate Polymers, 2015. 117: p. 797–806. [CrossRef] [PubMed] [Google Scholar]
  12. Rajendar, R.M., et al., Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomedical Materials, 2015. 10(3): p. 035002. [CrossRef] [Google Scholar]
  13. Rudaz, C., et al., Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules, 2014. 15(6): p. 2188–2195. [Google Scholar]
  14. Veronovski, A., et al., Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydrate Polymers, 2014. 113: p. 272–278. [CrossRef] [PubMed] [Google Scholar]
  15. Barnyakov, A.Y., et al., Threshold aerogel Cherenkov counters of the KEDR detector. Journal of Instrumentation, 2014. 9(09): p. C09005. [CrossRef] [Google Scholar]
  16. Pierre, A.C. and G.M. Pajonk, Chemistry of Aerogels and Their Applications. Chemical Reviews, 2002. 102(11): p. 4243–4266. [CrossRef] [PubMed] [Google Scholar]
  17. Tonguc, B.T. and S. Citci, Aerogel Efficiencies of Threshold Cherenkov Counters. Arabian Journal for Science and Engineering, 2014. 39(7): p. 5739–5743. [CrossRef] [Google Scholar]
  18. Sabri, F., et al., Effect of Aerogel Particle Concentration on Mechanical Behavior of Impregnated RTV 655 Compound Material for Aerospace Applications. Advances in Materials Science and Engineering, 2014. 2014: p. 10. [CrossRef] [Google Scholar]
  19. Randall, J.P., M.A.B. Meador, and S.C. Jana, Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Applied Materials & Interfaces, 2011. 3(3): p. 613–626. [CrossRef] [PubMed] [Google Scholar]
  20. Wei, G., X. Zhang, and F. Yu, Effective thermal conductivity analysis of xonotlite-aerogel composite insulation material. Journal of Thermal Science, 2009. 18(2): p. 142–149. [CrossRef] [Google Scholar]
  21. Julio, M.d.F. and L.M. Ilharco, Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous and Mesoporous Materials, 2014. 199: p. 29–39. [CrossRef] [Google Scholar]
  22. Habib Ullah, M., W.N.L. Mahadi, and T.A. Latef, Aerogel Poly(butylene succinate) Biomaterial Substrate for RF and Microwave Applications. Scientific Reports, 2015. 5: p. 12868. [CrossRef] [PubMed] [Google Scholar]
  23. Veres, P., et al., Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. International Journal of Pharmaceutics, 2015. 496(2): p. 360–370. [CrossRef] [PubMed] [Google Scholar]
  24. Mikkonen, K.S., et al., Prospects of polysaccharide aerogels as modern advanced food materials. Trends in Food Science & Technology, 2013. 34(2): p. 124–136. [Google Scholar]
  25. Power, M., et al., Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. Journal of Non-Crystalline Solids, 2001. 285(1): p. 303–308. [Google Scholar]
  26. Mazhar, U.-I., et al., Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnology Journal, 2015. 10(12): p. 1847–1861. [CrossRef] [PubMed] [Google Scholar]
  27. Cui, S., et al., Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy & Environmental Science, 2011. 4(6): p. 2070–2074. [Google Scholar]
  28. Baetens, R., B.P. Jelle, and A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review. Energy and Buildings, 2011. 43(4): p. 761–769. [Google Scholar]
  29. Shaid, A., M. Fergusson, and L. Wang, Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chemical and materials engineering, 2014. 2(2): p. 37–43. [Google Scholar]
  30. Welsch, F., M. Nemec, and W. Lawrence, Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl: CD (SD) rats. International journal of toxicology, 2008. 27(1): p. 43–57. [CrossRef] [PubMed] [Google Scholar]
  31. Welsch, F., Routes and Modes of Administration of Resorcinol and Their Relationship to Potential Manifestations of Thyroid Gland Toxicity in Animals and Man. International Journal of Toxicology, 2008. 27(1): p. 59–63. [Google Scholar]
  32. Rigacci, A., et al., Aerogels: a fascinating class of materials with a wide potential of application fields. 2017. 84(3): p. 375–376. [Google Scholar]
  33. Wang, X. and S.C. Jana, Synergistic Hybrid Organic-Inorganic Aerogels. ACS Applied Materials & Interfaces, 2013. 5(13): p. 6423–6429. [CrossRef] [PubMed] [Google Scholar]
  34. Soleimani Dorcheh, A. and M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology, 2008. 199(1): p. 10–26. [CrossRef] [Google Scholar]
  35. Mrowiec-Bialon, J., et al., Two-component aerogel adsorbents of water vapour. Journal of Non-Crystalline Solids, 1998. 225: p. 184–187. [Google Scholar]
  36. Fairen-Jimenez, D., F. Carrasco-Marin, and C. Moreno-Castilla, Adsorption of benzene, toluene, and xylenes on monolithic carbon aerogels from dry air flows. Langmuir, 2007. 23(20): p. 10095–10101. [CrossRef] [PubMed] [Google Scholar]
  37. Husing, N. and U. Schubert, Aerogels-Airy Materials: Chemistry, Structure, and Properties. 1998. 37(1-2): p. 22–45. [Google Scholar]
  38. Hsreid, S., E. Nilsen, and M.-A. Einarsrud, Properties of silica gels aged in TEOS. Journal of Non-Crystalline Solids, 1996. 204(3): p. 228–234. [Google Scholar]
  39. Smitha, S., et al., Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous and Mesoporous Materials, 2006. 91(1): p. 286–292. [CrossRef] [Google Scholar]
  40. Maleki, H., et al., Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science, 2016. 236: p. 1–27. [CrossRef] [PubMed] [Google Scholar]
  41. Kistler, S.S., Coherent Expanded-Aerogels. The Journal of Physical Chemistry, 1931. 36(1): p. 52–64. [Google Scholar]
  42. Tewari, P.H., A.J. Hunt, and K.D. Lofftus, Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters, 1985. 3(9): p. 363–367. [Google Scholar]
  43. Kirkbir, F., et al., Drying of aerogels in different solvents between atmospheric and supercritical pressures. Journal of Non-Crystalline Solids, 1998. 225: p. 14–18. [Google Scholar]
  44. Rechberger, F., G. Ilari, and M. Niederberger, Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths. Chemical Communications, 2014. 50(86): p. 13138–13141. [CrossRef] [Google Scholar]
  45. Qi, G., et al., High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science, 2011. 4(2): p. 444–452. [Google Scholar]
  46. Linneen, N., R. Pfeffer, and Y.S. Lin, CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous and Mesoporous Materials, 2013. 176: p. 123–131. [CrossRef] [Google Scholar]
  47. Zhang, S., et al., Irradiation-induced grafting of acrylonitrile onto activated carbon fiber. Polymers for Advanced Technologies, 2009. 20(12): p. 1168–1173. [Google Scholar]
  48. Minju, N., et al., Amine impregnated porous silica gel sorbents synthesized from water-glass precursors for CO2 capturing. Chemical Engineering Journal, 2015. 269: p. 335–342. [CrossRef] [Google Scholar]
  49. Redouane, B., et al., Superhydrophobic amine functionalized aerogels as sorbents for CO2 capture. Greenhouse Gases: Science and Technology, 2013. 3(1): p. 30–39. [CrossRef] [Google Scholar]
  50. Leyden, D.E. and G.H. Luttrell, Preconcentration of trace metals using chelating groups immobilized via silylation. Analytical Chemistry, 1975. 47(9): p. 1612–1617. [Google Scholar]
  51. Soliman, E.M., Synthesis and Metal Collecting Properties of Mono, Di, Tri and Tetramine Based on Silica Gel Matrix. Analytical Letters, 1997. 30(9): p. 1739–1751. [Google Scholar]
  52. Klonkowski, A.M., et al., The Coordination State of Copper(II) Complexes Anchored and Grafted onto the Surface of Organically Modified Silicates. Langmuir, 1999. 15(18): p. 5814–5819. [Google Scholar]
  53. Soliman, E., Synthesis and Metal Collecting Properties of Mono, Di, Tri and Tetramine Based on Silica Gel Matrix. Vol. 30. 1997. 1739–1751. [Google Scholar]
  54. Motahari, S., M. Nodeh, and K. Maghsoudi, Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups. Desalination and Water Treatment, 2016. 57(36): p. 16886–16897. [Google Scholar]
  55. Dingcai, W., S. Zhuoqi, and F. Ruowen, Structure and adsorption properties of activated carbon aerogels. Journal of Applied Polymer Science, 2006. 99(5): p. 2263–2267. [Google Scholar]
  56. Maldonado-Hodar, F.J., et al., Reversible toluene adsorption on monolithic carbon aerogels. Journal of Hazardous Materials, 2007. 148(3): p. 548–552. [CrossRef] [PubMed] [Google Scholar]
  57. Zhang, Z., et al. Benzene adsorption properties of silica aerogel-fiber composites. in 2008 2nd IEEE International Nanoelectronics Conference. 2008. [Google Scholar]
  58. Standeker, S., Z. Novak, and Z. Knez, Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity. Journal of Hazardous Materials, 2009. 165(1): p. 1114–1118. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.