Open Access
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 04004
Number of page(s) 6
Section Geomaterial Behaviour: Small Strain
Published online 25 June 2019
  1. Di Benedetto, H.; Corte, J.F. Matériaux Routiers Bitumineux 2: Constitution et Propriétés Thermomécaniques des Mélanges, Lavoisier; p. 288. (In French). (2005) [Google Scholar]
  2. Halvorsen, W.G.; Brown, D.L. Impulse technique for structural response frequency testing. J. Sound Vib., 11, 8-21, doi: 10.1121/1.2016847. (1977) [Google Scholar]
  3. ASTM: C215-08. Standard Test Method for Fundamental Transverse, Longitudinal and Torsional Frequencies of Concrete Specimens; ASCE: West Conshoshocken, PA, USA (2008) [Google Scholar]
  4. Migliori, A.; Sarrao, J. Resonant Ultrasound Spectroscopy-Applications to Physics, Materials Measurements and Nondestructive Evaluation; Wiley-Interscience publication: New York, NY, USA (1997) [Google Scholar]
  5. Renault, A.; Jaouen, L.; Sgard, F. Characterization of elastic parameters of acoustical porous materials from beam bending vibrations. J. Sound Vib., 330, 1950-1963, doi: 10.1016/j.jsv.2010.11.013. (2010) [CrossRef] [Google Scholar]
  6. Gudmarsson, A.; Ryden, N.; Birgisson, B. Characterizing the low strain complex modulus of asphalt concrete specimens through optimization of frequency response functions. J. Acoust. Soc. Am., 132, 2304-2312, doi: 10.1121/1.4747016. (2012) [CrossRef] [PubMed] [Google Scholar]
  7. Gudmarsson, A.; Ryden, N.; Di Benedetto, H.; Sauzéat, C.; Tapsoba, N.; Birgisson, B. Comparing Linear Viscoelastic Properties of Asphalt Concrete Measured by Laboratory Seismic and Tension-Compression Tests. J. Nondestruct. Eval., 33, 571-582, doi: 10.1007/s10921-014-0253-9. (2014) [CrossRef] [Google Scholar]
  8. Gudmarsson, A.; Ryden, N.; Di Benedetto, H.; Sauzéat, C. Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Constr. Build. Mater., 88, 20-31, doi: 10.1016/j.conbuildmat.2015.04.007. (2015) [CrossRef] [Google Scholar]
  9. Carret, J.-C.; Pedraza, A.; Di Benedetto, H.; Sauzéat, C. Comparison of the 3-dim linear viscoelastic behavior of asphalt mixes determined with tension-compression and dynamic tests. Constr. Build. Mater., 174, 529-536, doi: 10.1016/j.conbuildmat.2018.04.156. (2018) [CrossRef] [Google Scholar]
  10. Carret, J.-C.; Di Benedetto, H.; Sauzéat, C. Characterization of Asphalt Mixes Behaviour from Dynamic Tests and Comparison with Conventional Cyclic Tension-Compression Tests Appl. Sci., 8(11), 2117; (2018) [CrossRef] [Google Scholar]
  11. Carret, J.-C.; Di Benedetto, H.; Sauzéat, C. Multi-modal dynamic linear viscoelastic back analysis for asphalt mixes. J. Nondestruct. Eval., 37, 35, doi: 10.1007/s10921-018-0491-3. (2018) [CrossRef] [Google Scholar]
  12. Poirier, J.E.; Pouget, S.; Leroy, C.; Delaporte, B. Projets Mure et Improvmure: Bilan à mi-parcours. Revue Générale des Routes et de l’Aménagement 2016, 937, 38-41. (In French) (2016) [Google Scholar]
  13. Gayte, P.; Di Benedetto, H.; Sauzéat, C.; Nguyen, Q. Influence of transient effects for analysis of complex modulus tests on bituminous mixtures. Road Mater. Pavement Des., 17, 271-289, doi: 10.1080/14680629.2015.1067246. (2015) [CrossRef] [Google Scholar]
  14. Graziani, A.; Di Benedetto, H.; Perraton, D.; Sauzéat, C.; Hofko, B.; Poulikakos, L.; Pouget, S. Recommendation of RILEM TC 237-SIB on complex Poisson’s ratio characterization of bituminous mixtures. Mater. Struct., 50, 142. (2017) [CrossRef] [Google Scholar]
  15. Perraton, D.; Di Benedetto, H.; Sauzéat, C.; Hofko, N.; Graziani, A.; Nguyen, Q. 3 Dim experimental investigation of linear viscoelastic properties of bituminous mixtures. Mater. Struct., 49, 4813-4829, doi: 10.1617/s11527-016-0827-3. (2016) [CrossRef] [Google Scholar]
  16. Di Benedetto, H.; Olard, F.; Sauzéat, C.; Delaporte, B. Linear viscoelastic behavior of bituminous materials: From binders to mixtures. Road Mater. Pavement Des., 5, 163-202, doi: 10.1080/14680629.2004.9689992. (2004) [CrossRef] [Google Scholar]
  17. Nguyen, H.M.; Pouget, S.; Di Benedetto, H.; Sauzéat, C. Time-temperature superposition principle for bituminous mixtures. Eur. J. Environ. Civ. Eng., 13, 1095-1107, doi: 10.1080/19648189.2009.9693176. (2009) [CrossRef] [Google Scholar]
  18. Nguyen, M.L.; Sauzéat, C.; Di Benedetto, H.; Tapsoba, N. Validation of the time-temperature superposition principle for crack propagation in bituminous mixtures. Mater. Struct., 46, 1075-1087, doi: 10.1617/s11527-012-9954-7. (2013) [CrossRef] [Google Scholar]
  19. Nguyen, Q.T.; Di Benedetto, H.; Sauzéat, C.; Tapsoba, N. Time-temperature superposition principle validation for bituminous mixes in the linear and nonlinear domain. ASCE J. Mater. Civ. Eng., 25, 1181-1188, doi: 10.1061/(ASCE)MT.1943-5533.0000658. (2013) [CrossRef] [Google Scholar]
  20. Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA. (1980) [Google Scholar]
  21. Airey, G.; Rahimzadeh, B. Combined bituminous binder and mixture linear rheological properties. Constr. Build. Mater., 18, 535-548, doi: 10.1016/j.conbuildmat.2004.04.008. (2004) [CrossRef] [Google Scholar]
  22. Nguyen, Q.T.; Di Benedetto, H.; Sauzéat, C. Linear and nonlinear viscoelastic behavior of bituminous mixtures. Mater. Struct., 48, 2339-2351, doi: 10.1617/s11527-014-0316-5. (2015) [CrossRef] [Google Scholar]
  23. Mangiafico, S.; Babadopoulos, L.; Di Benedetto, H.; Sauzéat, C. Nonlinearity of bituminous mixtures. Mech. Time-Depend. Mater., 22, 29-49, doi: 10.1007/s11043-017-9350-3. (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.