Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 04005
Number of page(s) 6
Section Geomaterial Behaviour: Small Strain
DOI https://doi.org/10.1051/e3sconf/20199204005
Published online 25 June 2019
  1. Sagaseta, C. (1993). Predictive soil Mechanics: Soil properties and their measurement. Proceedings of the Wroth Memorial Symposium (eds. Houlsby, G. T. and Schofield, A. N.), Oxford. 19-49. [Google Scholar]
  2. Donohue, S. and Long, M. (2010). Assessment of sample quality in soft clay using shear wave velocity and suction measurements. Géotechnique, Vol. 60 (11), 883-889. DOI: 10.1680/geot.8.T.007.3741 [CrossRef] [Google Scholar]
  3. Burland, J. B. (1989). Ninth Laurits Bjerrum Memorial Lecture: Small is beautiful-the stiffness of soils at small strains. Canadian Geotechnical Journal, Vol. 26(4), 499-516. DOI: 10.1139/t89-064 [CrossRef] [Google Scholar]
  4. Clayton, C. R. I. (2011). 50th Rankine Lecture-Stiffness at small strain: research and practice. Géotechnique, Vol. 61 (1), 5-37. DOI: 10.1680/geot.2011.61.1.5 [CrossRef] [Google Scholar]
  5. Romo, M. P. and Seed, H. B. (1986). Analytical Modelling of Dynamic Soil Response in the Mexico Earthquake of September 19, 1985. Proceedings of the ASCE International Conference on the Mexico Earthquakes-1985, Mexico City, 148-162. [Google Scholar]
  6. Hashash, Y. M. A., Dashti, S., Romero, M. I., Ghayoomi, M., and Musgrove, M. (2015). Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments. Soil Dynamics and Earthquake Engineering, Vol. 78, 19-31. [CrossRef] [Google Scholar]
  7. Numanoglu, O. A., Hashash, Y. M. A., Cerna-Diaz, A., Olson, S. M., Bhaumik, L., Rutherford, C. J. and Weaver, T. (2017). Nonlinear 3-D Modeling of Dense Sand and the Simulation of a Soil-Structure System under Multi-Directional Loading. Geotechnical Frontiers 2017: Seismic Performance and Liquefaction. GSP 281, 379-388. [Google Scholar]
  8. Lawrence, F. V. Jr. (1965). Ultrasonic Shear Wave Velocities in Sand and Clay. Report 23, Response of Soils to Dynamic Loadings, directed by R. V. Whitman, Massachusetts Institute of Technology, Cambridge, Massachusetts. [CrossRef] [Google Scholar]
  9. Hardin, B. O. and Black, W. L. (1968). Vibration Modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94(2), 353-370. [Google Scholar]
  10. Atkinson, J. H. (1973). The deformation of undisturbed London Clay. Ph.D. thesis, University of London. [Google Scholar]
  11. Andréasson, B. A. (1979). Deformation Characteristics of Soft, High-Plastic Clays under Dynamic Loading Conditions. M.S. Thesis, Chalmers University of Technology, Gothenburg. [Google Scholar]
  12. Ohneda, H. Umehara, Y., Higuchi, Y. and Irisawa, K. (1984). Engineering Properties of Marine Clays in Osaka Bay (Part 4) Dynamic Stress-Strain and Strength properties. Technical Note of the Part and Airport Research Institute, No. 498 (in Japanese) [Google Scholar]
  13. Larsson, R., and Mulabdić, M. (1991). Shear moduli in Scandinavian clays. Report No. 40, SGI, Linköping, 127 p. [Google Scholar]
  14. Viggiani, G. (1992). Small strain stiffness of fine-grained soils. Ph.D. thesis, City University, London, U.K. [Google Scholar]
  15. Tanaka, H., Tanaka, M., Iguchi, H. and Nishida, K. (1994). Shear modulus of soft clay measured by various kinds of tests. Proc. of the International Conference on Pre-Failure Deformation of Geomaterials (eds. Shibuya, S., Mitachi, T. and Miura, S.), Sapporo, Japan, 235-240. [Google Scholar]
  16. Jamiolkowski, M., Lancellota, R. and Lo Presti, D. C. F. (1994). Remarks on the stiffness at small strain of six Italian clays. Proc.of the International Conference on Pre-Failure Deformation of Geomaterials (eds. Shibuya, S., Mitachi, T. and Miura, S.), Sapporo, Japan, 817-836. [Google Scholar]
  17. Nishimura, S. (2006). Laboratory study on anisotropy of natural London clay. Ph.D. thesis, Imperial College London, U.K. [Google Scholar]
  18. Anh-Minh, N. (2007). An investigation of the anisotropic stress-strain-strength characteristics of an Eocene clay. Ph.D. thesis, Imperial College London, U.K. [Google Scholar]
  19. Wood, T. (2016). On the Small Strain Stiffness of Some Scandinavian Soft Clays and Impact on Deep Excavations. Ph.D. Thesis, Chalmers University of Technology, Sweden. [Google Scholar]
  20. Carlton, B. D. and Pestana, J. M. (2012). Small Strain Shear Modulus of High and Low Plasticity Clays and Silts. Proceedings of the 15th WCEE, Lisbon. [Google Scholar]
  21. Agaiby, S. S. and Mayne, P. W. (2016). Use of shear wave velocity to estimate stress history and undrained shear strength of clays. Proceedings of the Geotechnical and Geophysical Site Characterisation 5-(eds., Lehane, Acosta-Martínez and Kelly), Sydney, Australia, 461-466. [Google Scholar]
  22. L’Heureux, J-S. and Long, M. (2017). Relationship between Shear-Wave Velocity and Geotechnical Parameters for Norwegian Clays. ASCE, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 143(6), 04017013-1-04017013-20. DOI: 10.1061/(ASCE)GT.1943-5606.0001645. [CrossRef] [Google Scholar]
  23. Mitchell, J. K. and Soga, K. (2005). Fundamentals of Soil Behavior. 3rd Edition, John Wiley & Sons Inc., New York. [Google Scholar]
  24. Terzaghi, K., Peck, R.B., and Mesri, G. (1996). Soil Mechanics in Engineering Practice. 3rd Ed., Wiley, NY. [Google Scholar]
  25. Wilson, S. and Dietrich, R. (1960). Effect of Consolidation Pressure on Elastic and Strength Properties of Clay. Proceedings Conference on Shear Strength of Cohesive Soils, Boulder, Colorado, 419-435. [Google Scholar]
  26. Silva, A. J. and Bryant, W. R. (2000). Jumbo Piston Coring in deep water Gulf of Mexico for seabed geohazard and geotechnical investigations. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA, 424-432. [Google Scholar]
  27. Butcher, A. P. and Powell, J. J. M. (1995). The effects of geological history on the dynamic stiffness in soils. Proc. of the 11th European Conference on Soil Mechanics and Foundation Engineering., Vol. 1, 27-36. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.