Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 06007
Number of page(s) 5
Section Geomaterial Behaviour: Strength, Critical State, Localisation
DOI https://doi.org/10.1051/e3sconf/20199206007
Published online 25 June 2019
  1. H. Fossen, R.A. Schultz, Z.K. Shipton & K. Mair, Deformation bands in sandstone: a review. Journal of the Geological Society 164, 755-769 (2007). [CrossRef] [Google Scholar]
  2. T. Wong & P. Baud, The brittle-ductile transition in porous rock: A review. Journal of Structural Geology 44, 25-53 (2012). [CrossRef] [Google Scholar]
  3. M. S. Paterson & T. F. Wong, Experimental Rock Deformation-The Brittle Field, 2nd ed., Springer, New York (2005). [Google Scholar]
  4. K. Mogi, Effect of the triaxial stress system on the failure of dolomite and limestone. Tectonophysics 11, 111-127 (1971). [CrossRef] [Google Scholar]
  5. M. Takahashi & H. Koide, Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. in (International Society for Rock Mechanics, 1989). [Google Scholar]
  6. W.Wawersik, L. Carlson, D. Holcomb & R.Williams, New method for true-triaxial rock testing. International Journal of Rock Mechanics and Mining Sciences 34, 330 (1997). [Google Scholar]
  7. B. Haimson & C. Chang, A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. International Journal of Rock Mechanics and Mining Sciences 37, 285-296 (2000). [CrossRef] [Google Scholar]
  8. M. Ingraham, K. Issen & D. Holcomb, Response of Castlegate sandstone to true triaxial states of stress. Journal of Geophysical Research: Solid Earth 118, 536-552 (2013). [CrossRef] [Google Scholar]
  9. X. Ma & B.C. Haimson, Failure characteristics of two porous sandstones subjected to true triaxial stresses. Journal of Geophysical Research: Solid Earth 121, 6477-6498 (2016). [CrossRef] [Google Scholar]
  10. P. Bésuelle, J. Desrues & S. Raynaud, Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. International Journal of Rock Mechanics and Mining Sciences 37, 1223-1237 (2000). [CrossRef] [Google Scholar]
  11. P. Bésuelle & P. Lanatà, A New True Triaxial Cell for Field Measurements on Rock Specimens and Its Use in the Characterization of Strain Localization on a Vosges Sandstone During a Plane Strain Compression Test. Geotechnical Journal 39, 879-890 (2016). [Google Scholar]
  12. A. Millien, Comportement anisotrope du grès des Vosges: Élastoplasticité, localization de la rupture [in French], PhD thesis, Univ. Joseph Fourier, Grenoble, France (1993). [Google Scholar]
  13. J.F. Labuz & J.M. Bridell, Reducing Frictional Constraint in Compression Testing Through Lubrication. International Journal of Rock Mechanics and Mining Sciences 30, 451-455 (1993). [CrossRef] [Google Scholar]
  14. P. Bésuelle & S. Hall, Characterization of the strain localization in a porous rock in plane strain condition using a new true-triaxial apparatus. in Advances in bifurcation and degradation in geomaterials 345-352 (Springer, 2011). [Google Scholar]
  15. H.A.M. Van Eekelen, Isotropic yield surfaces in three dimensions for use in soil mechanics. International Journal for Numerical and Analytical Methods in Geomechanics 4, 89-101 (1980). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.