Open Access
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 13007
Number of page(s) 6
Section Behaviour at Geotechnical Interfaces
Published online 25 June 2019
  1. H. Kishida, M. Uesugi, Geotechnique, Tests of the interface between sand and steel in the simple shear apparatus, 37(1), 45-52, (1987). [CrossRef] [Google Scholar]
  2. M. Boulon, Comp. and Geotechnique. Basic features of soil structure interface behaviour, 7(1-2), 115-131, (1989). [CrossRef] [Google Scholar]
  3. M. Boulon, R. Nova, Comp. and Geotechnics. Modelling of soil-structure interface behaviour a comparison between elastoplastic and rate type laws, 9(1-2), 21-46, (1990). [Google Scholar]
  4. J. Dejong, D. White, M. Randolph, Soils and Foundations, Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry, 46(1), 15-28, (2006). [Google Scholar]
  5. M. Uesugi, H. Kishida, Y. Tsubakihara, Soils and foundations, Behavior of sand particles in sand-steel friction, 28(1), 107-118, (1988). [Google Scholar]
  6. S. Georgi, Experimentelle Untersuchungen zu Verformungsakkumulation und Tragfähigkeitsreduktion zyklisch belasteter Pfalgründungen', Phd Thesis. Technical University of Berlin, (2016). [Google Scholar]
  7. V. Fioravante, Soils and foundations, On the shaft friction modelling of non-displacement piles in sand, 42(2), 23-33, (2002). [Google Scholar]
  8. I. Shahrour, F. Rezaie, Comp. and Geotechnics. An elastoplastic constitutive relation for the soil-structure interface under cyclic loading, 21(1), 21-39, (1997). [CrossRef] [Google Scholar]
  9. R.E. Goodman, R.L. Taylor, T.L. Brekke, J. of Soil Mech.s & Found. Div, A model for the mechanics of jointed rocks, (1968). [Google Scholar]
  10. G. Beer, Int. J. for num. meth. in eng., An isoparametric joint/interface element for finite element analysis, 21(4), 585-600, (1985). [CrossRef] [Google Scholar]
  11. C. Desai, M. Zaman, J. Lightner, H. Siriwardane, Int. J.for Num. and Anal. Meth. in Geomechanics, Thin-layer element for interfaces and joints, 8(1), 19-43, (1984). [CrossRef] [Google Scholar]
  12. D. Griffiths, Proc. of the 5th Int. Con. on Num. Meth. in Geomech., Nagoya, Numerical modelling of interfaces using conventional finite elements, 2 837-844, (1985). [Google Scholar]
  13. B.Cerfontaine, A.-C.Dieudonné, J.-P. Radu, F. Collin, R.Charlier, Comp. and Geotech., 3d zero-thickness coupled interface finite element:69 124-140, (2015). [CrossRef] [Google Scholar]
  14. H. Stutz, F. Wuttke, T. Benz, Num. Meth. in Geotech. Eng., Extended zero-thickness interface element for accurate soil-pile interaction modelling, 283, (2014). [CrossRef] [Google Scholar]
  15. H. Liu, E. Song, H.I. Ling, Mech. Research Comm., Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics, 33(4), 515-531, (2006). [CrossRef] [Google Scholar]
  16. J. Liu, D. Zou, X. Kong, Comp. and Geotech., A three-dimensional state-dependent model of soil-structure interface for monotonic and cyclic loadings, 61 166-177, (2014). [CrossRef] [Google Scholar]
  17. G. Mortara, Politech. di Torino, An elastoplastic modelling sand structure interface behaviour under monotonic and cyclic loading, (2003). [Google Scholar]
  18. H.H. Stutz, F. Wuttke, Journal of Zhejiang Univ. A, Hypoplasticmodeling of soil-structure interfaces in offshore applications, 19(8), 624-637, (2018). [CrossRef] [Google Scholar]
  19. H. Stutz, D. Mašín, F. Wuttke, Acta Geotech., Enhancement of a hypoplastic model for granular soil-structure interface behaviour, 11(6), 1249-1261, (2016). [CrossRef] [Google Scholar]
  20. B. Kullolli, H.H. Stutz, P. Cuellar, M. Baessler, F. Rackwitz, Numge , A generalized plasticity model adapted for shearing interface problems, 97, (2018). [Google Scholar]
  21. O. Zienkiewicz, Z. Mroz, Mech. of Eng. materials, Generalized plasticity formulation and applications to geomechanics, 44(3), 655-680, (1984). [Google Scholar]
  22. M. Pastor, O. Zienkiewicz, K. Leung, Int. J. for Num. and Analyt. Meth. in Geomech., Simple model for transient soil loading in earthquake analysis. Ii. Non-associative models for sands, 9(5), 477-498, (1985). [CrossRef] [Google Scholar]
  23. M. Pastor, O. Zienkiewicz, Proc., 2nd Int. Symp. on Num. Models in Geomech., A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading, 131-150, (1986). [Google Scholar]
  24. M. Pastor, O. Zienkiewicz, A. Chan, Int. Journal for Num. and Analyt. Methods in Geomechanics, Generalized plasticity and the modelling of soil behaviour, 14(3), 151-190, (1990). [Google Scholar]
  25. E. Frossard, Géotechnique, Une équation d’éoulement simple pour les matériaux granulaires, 33(1), 21-29, (1983). [CrossRef] [Google Scholar]
  26. P. Mira, M. Pastor, T. Li, X. Liu, Comp. meth. in applied mech. and eng., A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems, 192(37), 4257-4277, (2003). [CrossRef] [Google Scholar]
  27. P. Mira, M. Pastor, T. Li, X. Liu, Revue française de génie civil, Failure problems in soils: An enhanced strain coupled formulation with application to localization problems, 8(5-6), 735-759, (2004). [Google Scholar]
  28. P. Cuellar, Pile foundations for offshore wind turbines: Numerical and experimental investigations on the behavior under short term and long term cyclic loading, PhD Thesis, Tech. Univ. of Berlin, (2011). [Google Scholar]
  29. D.M. Wood, Cambridge University Press, Soil behaviour and critical state soil mechanics, (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.