Open Access
Issue |
E3S Web Conf.
Volume 93, 2019
2018 International Conference on Green Energy and Environment Engineering (CGEEE 2018)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Environmental Engineering and Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/20199302005 | |
Published online | 17 April 2019 |
- R. Agarwal, S. Lata, M. Gupta, and P. Singh, “Removal of melanoidin present in distillery effluent as a major colorant: A review,” J. Environ. Biol., 31, 4, 521-528 (2010). [PubMed] [Google Scholar]
- R. Farshi, S. Priya, and M. B. Saidutta, “Reduction of Color and COD of Anaerobically Treated Distillary Wastewater by Electrochemical Method,” Int. J Curr. Engg Tech, 168-171 (2013). [Google Scholar]
- P. C. Sangave, P. R. Gogate, and A. B. Pandit, “Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment,” Chemosphere, 68, 1, 32-41 (2007). [PubMed] [Google Scholar]
- Z. Liang, Y. Wang, Y. Zhou, and H. Liu, “Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride,” Chem. Eng. J., 152, 1, 88-94 (2009). [Google Scholar]
- K. Sankaran, M. Premalatha, and M. Vijayasekaran, “AC SC,” J. Clean. Prod. (2017). [Google Scholar]
- H. W. Lin, C. Kustermans, E. Vaiopoulou, A. Prévoteau, K. Rabaey, Z. Yuan, and I. Pikaar, “Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers,” Water Res., 118, 114-120 (2017). [CrossRef] [PubMed] [Google Scholar]
- M. Cai, J. Hu, G. Lian, R. Xiao, Z. Song, M. Jin, C. Dong, Q. Wang, D. Luo, and Z. Wei, “Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering,” Ultrason. Sonochem., 42, 609-618 (2018). [CrossRef] [PubMed] [Google Scholar]
- C. T. Wang, W. L. Chou, and Y. M. Kuo, “Removal of COD from laundry wastewater by electrocoagulation/electroflotation,” J. Hazard. Mater., 164, 81-86 (2009). [Google Scholar]
- M. Kobya and E. Gengec, “Decolourization of melanoidins by a electrocoagulation process using aluminium electrodes,” Environ. Technol., 33, 21, 2429-2438 (2012). [Google Scholar]
- G. Mohanakrishna, S. V. Mohan, and P. N. Sarma, “Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation,” J. Hazard. Mater., 177, 1-3, 487-494, (2010). [Google Scholar]
- M. Kumar, F. I. A. Ponselvan, J. R. Malviya, V. C. Srivastava, and I. D. Mall, “Treatment of bio-digester effluent by electrocoagulation using iron electrodes,” J. Hazard. Mater., 165, 345-352 (2009). [Google Scholar]
- J. Llanos, S. Cotillas, P. Cañizares, and M. A. Rodrigo, “Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process,” Water Res., 53, 329-338 (2014). [CrossRef] [PubMed] [Google Scholar]
- V. Kuokkanen, T. Kuokkanen, J. Rämö, and U. Lassi, “Electrocoagulation treatment of peat bog drainage water containing humic substances,” Water Res., 79, 79-87 (2015). [CrossRef] [PubMed] [Google Scholar]
- S. K. Battula, J. Cheukuri, N. V. V. S. S. Raman, and D. Bhagawan, “Effective Removal of Fluoride from Ground Water Using Electro- Coagulation,” Int. J. Eng. Res. Appl., 4, 2, 439-445 (2014). [Google Scholar]
- P. Drogui, M. Asselin, S. K. Brar, H. Benmoussa, and J. F. Blais, “Electrochemical removal of pollutants from agro-industry wastewaters,” Sep. Purif. Technol., 61, 3, 301-310 (2008). [Google Scholar]
- M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” J. Hazard. Mater., 114, 1-3, 199-210 (2004). [Google Scholar]
- C. Thakur, V. C. Srivastava, and I. D. Mall, “Electrochemical treatment of a distillery wastewater : Parametric and residue disposal study,” Chem. Eng. J. 148, 496-505 (2009). [Google Scholar]
- I. Chakchouk, N. Elloumi, C. Belaid, S. Mseddi, L. Chaari, and M. Kallel, “A combined electrocoagulation-electrooxidation treatment for dairy wastewater,” Brazilian J. Chem. Eng., 34, 1, 109-117 (2017). [CrossRef] [Google Scholar]
- B. M. Krishna, U. N. Murthy, B. Manoj Kumar, and K. S. Lokesh, “Electrochemical pretreatment of distillery wastewater using aluminum electrode,” J. Appl. Electrochem., 40, 3, 663-673 (2010). [Google Scholar]
- N. Kannan, G. Karthikeyan, and N. Tamilselvan, “Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon,” J. Hazard. Mater., 137, 3, 1803-1809 (2006). [Google Scholar]
- J. P. Wang, Y. Z. Chen, Y. Wang, S. J. Yuan, and H. Q. Yu, “Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology,” Water Res., 45, 17, 5633-5640 (2011). [CrossRef] [PubMed] [Google Scholar]
- A. R. Makwana and M. M. Ahammed, “Electrocoagulation process for the post-treatment of anaerobically treated urban wastewater,” Sep. Sci. Technol., 52, 8, 1412-1422 (2017). [Google Scholar]
- T. Shojaeimehr, F. Rahimpour, M. A. Khadivi, and M. Sadeghi, “A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA),” J. Ind. Eng. Chem., 20, 3, 870-880 (2014). [CrossRef] [Google Scholar]
- M. Damaraju, D. Bhattacharyya, and K. K. Kurilla, “Removal of Recalcitrant Carbon from an Industrial Wastewater Using Electrocoagulation,” Int. J. Civ. Eng., 15, 4, 697-703 (2017). [CrossRef] [Google Scholar]
- M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, 76, 5, 965-977 (2008). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.