Open Access
E3S Web Conf.
Volume 96, 2019
2018 6th International Conference on Environment Pollution and Prevention (ICEPP 2018)
Article Number 01005
Number of page(s) 5
Section Wastewater Treatment and Soil Remediation
Published online 28 May 2019
  1. F. Kafilzadeh, S. Saberifard. Isolation and identification of chromium (VI)-resistant bacteria from Soltan Abad river sediments (Shiraz-Iran). Jundishapur. J. Health Sci. 8(1) (2016) [Google Scholar]
  2. N.T. Joutey, H. Sayel, W. Bahafid, N. El Ghachtouli. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. T. 233, 45-69 (2015) [Google Scholar]
  3. WHO. Guidelines for Drinking-water Quality: Recommendations. World Health Organization. (2004) [Google Scholar]
  4. D.E. Salt, M. Blaylock, N.P Kumar, V. Dushenkov V.B.D. Ensley, I. Chet, I. Raskin. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. 13 (5),468-474 (1995) [Google Scholar]
  5. G. Suresh, N. Ravichandran, B. Ramesh, A. Suresh, G.V. Siva. Isolation and characterization of chromium-tolerant bacteria from chromium-containing waste water. Biorem. Biodiv. Bioavail. 5(1), 22-27 (2011) [Google Scholar]
  6. A. Smrithi, K. Usha. Isolation and characterization of chromium removing bacteria from tannery effluent disposal site. Intl. J. Adv. Biotec. Res. 3 (3),644-652 (2012) [Google Scholar]
  7. A.S.S. Ibrahim, M.A. El-Tayeb, Y.B. Elbadawi, A.A. Al-Salamah. Isolation and characterization of novel potent Cr (VI) reducing alkaliphilic Amphibacillus sp. KSUCr3 from hypersaline soda lakes. Electron. J. Biotechnol. 14 (4),4-18 (2011) [Google Scholar]
  8. H. Sayel, N.T. Joutey, W. Bahafid, G.N. El. Chromium resistant bacteria: impact on plant growth in soil microcosm. Arch. Environ. Prot. 40 (2),81-89 (2014) [CrossRef] [Google Scholar]
  9. S. Khan, Q. Cao, Y.M. Zheng, Y.Z. Huang, Y.G. Zhu. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152(3), 686-692 (2008) [Google Scholar]
  10. M.U. Khan, A. Sessitsch, M. Harris, K. Fatima, A. Imran, M. Arslan, M. Afzal. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front. Plant Sci. (2015) [Google Scholar]
  11. E. Ezaka, C.U. Anyanwu. Chromium (VI) tolerance of bacterial strains isolated from sewage oxidation ditch. Int. J. Environ. Sci. 1(7), 1725-1734 (2011) [Google Scholar]
  12. A.I. Zouboulis, M.X. Loukidou, K.A. Matis. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process. Biochem. 39(8), 909-916 (2004) [Google Scholar]
  13. J.G. Holt. Bergey’s Manual of Determinative Bacteriology, 9th edn. LWW, Baltimore, (1994) [Google Scholar]
  14. J.G. Cappuccino, N. Sherman. Microbiology: A Laboratory Manual, 10th edn. Pearson, Boston, USA, (2013) [Google Scholar]
  15. K.M. Lwin, M.M. Myint, T. Tar, W.Z.M. Aung. Isolation of plant hormone (Indole-3-Acetic Acid - IAA) producing rhizobacteria and study on their effects on maize seedling. Eng. J. 16 (5),137-144 (2012) [Google Scholar]
  16. S. Gupta, M.K. Meena, S. Datta. Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phospthate solubilization and IAA production. Int. J. Curr. Microbiol. Appl. Sci. 3 (7),1082-1090 (2014) [Google Scholar]
  17. C. Viti, A. Pace, L. Giovannetti. Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol. 46(1), 000-0005 (2003) [Google Scholar]
  18. M.U. Rahman, S. Gul, M.Z.U. Haq. Reduction of chromium (VI) by locally isolated Pseudomonas sp. C-171. Turkish J. Biol. 31 (3),161-166 (2007) [Google Scholar]
  19. C.G. Kouadjo, A. Zeze. Chromium tolerance and reduction potential of Staphylococci species isolated from a fly ash dumping site in South Africa. Afr. J. Biotechnol. (2011) [Google Scholar]
  20. J.R. Freitas, M.R. Banerjee, J.J. Germida. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fert. Soils. 24 (4),358-364 (1997) [Google Scholar]
  21. F. Ahmad, I. Ahmad, M.S. Khan. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163(2), 173-181 (2008) [CrossRef] [PubMed] [Google Scholar]
  22. G.M. Gadd. Heavy metal accumulation by bacteria and other microorganisms. Experientia. 46(8), 834-840 (1990) [Google Scholar]
  23. M.S. Mirza, W. Ahmad, F. Latif, J. Haurat, R. Bally, P. Normand, K.A. Malik. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil. 237(1), 47-54 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.