Open Access
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
Article Number 03005
Number of page(s) 9
Section Safety in Construction
Published online 29 May 2019
  1. Abu-Hejleh, N., Zornberg, J.G., Wang, T. & Watcharamonthein, J. 2002. Monitored displacements of unique geosynthetic-reinforced bridge abutments. Geosynthetics International. 9 (1). [Google Scholar]
  2. Agnew, D.C. 2002. History of seismology. International Handbook of Earthquake and Engineering Seismology. 81(A). 3-11. [CrossRef] [Google Scholar]
  3. Balandin, D.V., Bolotnik, N.N., and Pilkey, W.D. 2000. Optimal protection from impact and shock: Theory and methods. Appl. Mech. Rev., ASME. 53 (9). 237-264. [CrossRef] [Google Scholar]
  4. Balandin, D.V., et al. 2008. Concept of a platform based impact isolation system. Medical Eng. & Physics. 30 (2). 258-267. [CrossRef] [Google Scholar]
  5. Barnett, D.M. & Lothe, J. 1973. Synthesis of the sextic and the integral formalism for dislocations, Green’s functions, and surface waves in anisotropic elastic solids. Phys. Norv. 7. 13–19. [Google Scholar]
  6. Barnett, D.M. & Lothe, J. 1974. Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals. J. Phys. Ser. F. 4. 671–678. [CrossRef] [Google Scholar]
  7. Barnett, D.M., Lothe, J. 1974. An image force theorem for dislocations in anisotropic bicrystals. J. Phys. Ser. F. 4. 1618–1635. [CrossRef] [Google Scholar]
  8. Bensoussan, A., Lions, J.L., & Papanicolaou, G. 1978. Asymptotic analysis for periodic structures, North-Holland Publ., Amsterdam. [Google Scholar]
  9. Blondeau, F., 1989. Fondations profondes Cours de mécanique des sols de l’E.N.P.C. Techniques de l’Ingérieur, Chapitre C, 248. [Google Scholar]
  10. Braitenberg, C. & Zadro, M. 2007. Comparative analysis of the free oscillations generated by the Sumatra-Andaman Islands 2004 and the Chile 1960 Earthquakes, Bull. Seism. Soc. Amer. 97(1A). S6-S17. [CrossRef] [Google Scholar]
  11. Cagniard, L. 1939. Reflexion et refraction des ondes seismique progressive (Thesis), Gauthier-Villars & Cie., Paris. [Google Scholar]
  12. Cecchi, A., and Rizzi, N.L. 2001. Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38. 29–36. [Google Scholar]
  13. Chadwick, P. & Borejko, P. 1994. Existence and uniqueness of Stoneley waves, Geophys. J. Int. 118. 279-284. [Google Scholar]
  14. Chadwick, P. & Jarvis, D.A. 1979. Surface waves in a prestressed elastic body, Proc. Roy. Soc. London. Ser. A. 366. 517–536. [Google Scholar]
  15. Chadwick, P. & Smith, G.D. 1977. Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17. 303–376. [Google Scholar]
  16. Chadwick, P. & Ting, T.C.T. 1987. On the structure and invariance of the Barnett-Lothe tensors, Quart. Appl. Math. 45. 419–427. [CrossRef] [Google Scholar]
  17. Chimenti, D.E. 1994. Lamb waves in microstructured plates. Ultrasonics. 32. 255-260. [Google Scholar]
  18. De Buhan, P., Mangiavacchi, R., Nova, R., Pellegrini, G. & Salençon, J. 1989. Yield design of reinforced earth walls by a homogenization method. Géotechnique. 39 (2). 189-201. [CrossRef] [Google Scholar]
  19. Den Hartog, J.P. 1985. Mechanical Vibrations. N.Y., Dover Publ. [Google Scholar]
  20. Detournay E. & Cheng A. H.-D. 1993. Fundamentals of Poroelasticity, Vol. II Comprehensive Rock Engineering: Principles, Practice & Projects. N.Y., Pergamon Press [Google Scholar]
  21. Djeran-Maigre, I. & Kuznetsov, S.V. 2008. Solitary SH waves in two layered traction free plates. Comptes Rendus Acad Sci, Paris, Ser. Mecanique. 336 102-107. [Google Scholar]
  22. Eiksund, G., Hoff, I. & Perkins, S. 2004. Cyclic triaxial tests on reinforced base course material. Proceedings EuroGeo3, DGGT, Munich, Germany, Vol. 2, 619-624. [Google Scholar]
  23. Farnell, G.W. 1970. Properties of elastic surface waves. Phys. Acoust. 6. 109–166. [Google Scholar]
  24. Guo, N. & Cawley, P. 1993. Lamb wave propagation in composite laminates and its relationship with acousto-ultrasonics, NDT & E Int., 26, pp. 75-84. [CrossRef] [Google Scholar]
  25. Gunderson, S.A., Barnett, D.M., & Lothe, J. 1987. Rayleigh wave existence theory: a supplementary remark, Wave Motion, 9, 319–321. [Google Scholar]
  26. Haskell, N.A. 1953. Dispersion of surface waves on multilayered media, Bull. Seismol. Soc. America. V.43. No..1. P.17–34. [Google Scholar]
  27. Herle, V. 2006. Long-term performance of reinforced soil structures. Proceedings of the 13. Danube-Conference on Geotechnical Engineering, Slovenian Geotechnical Society, Ljublana, Slovenia, Vol. 2, 251-256. [Google Scholar]
  28. Ketchart, K. & Wu, J.T.H. 2001. Performance test for geosynthetic reinforced soil including effects of preloading. Federal Highway Administration, McLean, VA, USA, Report No. FHWA-R-01-018. [Google Scholar]
  29. Knopoff, L. 1964. A matrix method for elastic wave problems, Bull. Seismol. Soc. America. V.54. No.1. P.431–438. [Google Scholar]
  30. Kusakabe O., Takemura J., Takahashi A., Izawa J., & Shibayama S. 2008. Physical modeling of seismic responses of underground structures, Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, 1459-1474. [Google Scholar]
  31. Kuznetsov, S.V. 2002. Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math. 60 577–587. [Google Scholar]
  32. Kuznetsov, S.V. 2003. Surface waves of non-Rayleigh type, Quart. Appl. Math. V.61. No.3. P.575–582. [Google Scholar]
  33. Kuznetsov, S.V. 2006a. Love waves in monoclinic media (in Russian), Prikl. Math. Mech., Vol. 70, 141-154. [Google Scholar]
  34. Kuznetsov, S.V. 2006b. SH-waves in laminated plates, Quart. Appl. Math., Vol. 64, 153-165. [CrossRef] [Google Scholar]
  35. Lamb, H. 1917. On waves in an elastic plate, Proc. Roy. Soc., A93, 114–128. [NASA ADS] [CrossRef] [Google Scholar]
  36. Lim, T.C. & Farnell, G.W. 1968. Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals, J. Appl. Phys., 39, 4319–4325. [Google Scholar]
  37. Lim, T.C. & Farnell, G.W. 1969. Character of pseudo surface waves on anisotropic crystals, J. Acoust. Soc. Amer., 45, 845–851. [CrossRef] [Google Scholar]
  38. Lin, W. & Keer, L.M. 1992. A study of Lamb waves in anisotropic plates, J. Acoust. Soc. Amer., 92, pp. 888-894. [CrossRef] [Google Scholar]
  39. Liu, G.R., Tani, J., Watanabe, K., & Ohyoshi, T. 1990. Lamb wave propagation in anisotropic laminates, J. Appl. Mech., 57, pp. 923-929. [Google Scholar]
  40. Lothe, J. & Barnett, D.M. 1976. On the existence of surface wave solutions for anisotropic elastic half-spaces with free surface, J. Appl. Phys., 47, 428–433. [Google Scholar]
  41. Love, A.E.H. 1911. Some Problems of Geodynamics. Cambridge University Press, Cambridge pp. 165-178. [Google Scholar]
  42. Lowe, M.J.S. 1995. Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 42, 525–542. [CrossRef] [Google Scholar]
  43. Maradudin A. and Mills D.L. 1975. Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the Presence of surface roughness. Phys. Rev. 11(B) 1392. [Google Scholar]
  44. Maradudin A. and Mills D.L. 1976. Attenuation of Rayleigh surface waves by surface roughness. Appl Phys. Letters. 28 (10) 573-575. [CrossRef] [Google Scholar]
  45. Maradudin A. and Shen J. 1980. Multiple scattering of waves from random rough surfaces. Phys. Rev. 22(B) 4234-4240. [Google Scholar]
  46. Michel, J.C., Moulinec, H., & Suquet, P. 1999. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Methods Appl. Mech. Eng., 172, 109–143. [Google Scholar]
  47. Moghaddas-Nejad, F. & Small, J.C. 2003. Resilient and permanent characteristics of reinforced granular materials by repeated load triaxial tests. Geotechnical Testing Journal, ASTM, Vol. 26, Issue 2. [Google Scholar]
  48. Motamed R., Itoh K., Hirose S., Takahashi A., & Kusakabe O. 2008. Evaluation of Wave Barriers on Ground Vibration Reduction through Numerical Modeling in ABAQUS, Proceedings of SIMULIA Customer Conference 2009, London, UK, 402-41. [Google Scholar]
  49. Sanchez-Palencia, E. 1983. Homogenization method for the study of composite media, Asymptotic Analysis II, 192-214. [Google Scholar]
  50. Scholte, J.G. 1947. The range of existence of Rayleigh and Stoneley waves, Monthly Notices Roy. Astron. Soc.: Geogphys. Suppl., Vol. 5, pp. 120-126. [CrossRef] [Google Scholar]
  51. Sengupta, P.R. & Nath, S. 2001. Surface waves in fiber-reinforced anisotropic elastic media, Sadhana, 26, 363–370. [CrossRef] [Google Scholar]
  52. Sezawa, K. 1927. Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces. Bull. Earthquake Res. Inst. Tokyo, 3, 1–18. [Google Scholar]
  53. Sezawa, K. & Kanai, K. 1939. The range of possible existence of Stoneley waves and some related problems, Bull. Earthquake Research Inst. (Tokyo), Vol. 17, pp.1-8. [Google Scholar]
  54. Sobczyk K. 1966. Scattering of Reyleigh waves at a random boundary of an elastic body, Proc. Vibr. Problems, 7 (4), 363-374. [Google Scholar]
  55. Stoneley, R. 1924. Elastic waves at the surface of separation of two solids, Proceedings of the Royal Society (London) A106, pp. 416-428. [CrossRef] [Google Scholar]
  56. Strutt J.W. (Lord Rayleigh) 1885. On wave propagating along the plane surface of an elastic solid, Proc. London Math. Soc. Vol. 17, 4-11. [Google Scholar]
  57. Takahashi A., Takemura J., & Shimodaira T. 2001. Seismic performance of reinforced earth wall with geogrid, Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, 1265-1268. [Google Scholar]
  58. Thomson, W.T. 1950. Transmission of elastic waves through a stratified solid medium, J. Appl. Phys. V.21. No.2. P.89–93. [Google Scholar]
  59. Ting, T.C.T. 1996. Anisotropic elasticity: theory and Applications, Oxford University Press. [Google Scholar]
  60. Ting, T.C.T. 2002. An explicit secular equation for surface waves in an elastic material of general anisotropy, Q. J. Mech. Appl. Math, 55, 297-311. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.