Open Access
Issue
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
Article Number 04004
Number of page(s) 10
Section Reliability of Buildings and Constructions
DOI https://doi.org/10.1051/e3sconf/20199704004
Published online 29 May 2019
  1. Kotlov A.F. Tolerances and technical measurements for the installation of metal and reinforced concrete structures. – M. Stroyizdat, 1988. – 304 p. [Google Scholar]
  2. Sobol I.M. Numerical Methods of Monte-Carlo. – M.: Nauka, 1973. – 312 p. [Google Scholar]
  3. Yermakov S.M. The Monte Carlo method and related questions. – M: Nauka, 1971. – 328 p. [Google Scholar]
  4. Smirnov N.V., Dunin-Barkovskiy I.V. Course of Theory of Probability and Mathematical Statistics for technical applications. – M: Nauka, 1965. – 512 p. [Google Scholar]
  5. Pugachev V.S. Theory of Probability and Mathematical Statistics. – M: Nauka, 1979. – 496 p. [Google Scholar]
  6. Saveliev V.A., Lebed E.V., Shebalina O.V. Mathematical modeling of the assembly of spatial structures // Industrial Construction. 1991. No 1. – p. 18-20. [Google Scholar]
  7. Lebed E.V. The accuracy of statistical computing of the standard deviation of a random variable // IOP Conference Series: Earth and Environmental Science. Vol. 90, 2017. – 012150. – 5 p. EMMFT 2017. IOP Publishing. [CrossRef] [Google Scholar]
  8. Lebed E.V. Pseudorandom number generation for computer modeling of actual shapes of spatial bar structures. IOP Conference Series: Materials Science and Engineering, Volume 365, Safety in Construction. 2018. – 042021–8 p. [CrossRef] [Google Scholar]
  9. Law Averill M. Simulation Modelling and Analysis / Averill M. Law, W. David Kelton. – London: McGraw-Hill, 1991. – 754 p. [Google Scholar]
  10. Larsen Richard J. An Introduction to Mathematical Statistics and its Applications / Richard J. Larsen, Morris L. Marx. – Boston: Pearson Education, 2012–757 p. [Google Scholar]
  11. Lebed E.V. On the numerical modeling of the assembly of the frame of single-layer lattice dome. // Journal of the Volgograd State University for Architecture and Civil Engineering. Series: Civil Eng. & Architecture. 2003. No. 29 (48). Pp. 81—86 (in Russian). [Google Scholar]
  12. Lebed E.V. Computer modeling of the assembly of single-layer lattice domes with respect to imperfections in the lengths of the bars / Conference series: Mathematical methods in engineering and technology. Saratov State Technical University, Saratov. 2008. Volume 4, p. 199-202 (in Russian). [Google Scholar]
  13. Starnes, Yates, Moore. The Practice of Statistics / Daren S. Starnes, Dan Yates, David S. Moore. – New York: W.H. Freeman and Company, 2012–898 p. [Google Scholar]
  14. Chai T. and Draxler R.R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. – USA: Geoscientific Model Development, 7. – 2014. Pp. 1247–1250. [Google Scholar]
  15. Makkonen Lasse, Pajari Matti, Tikanmäki Maria. Closure to “Problems in the extreme value analysis” (Struct. Safety. 2008:30:405-419) / Structural Safety. Elsevier. Vol. 40 (2013) No: January, Pp. 65–67. [CrossRef] [Google Scholar]
  16. Ruzhansky I.L. Aluminum dome for the tank with a diameter of 40 m / Construction and Special Works in Civil Engineering. 2002. No. 7. P. 10–16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.