Open Access
Issue
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
Article Number 04043
Number of page(s) 11
Section Reliability of Buildings and Constructions
DOI https://doi.org/10.1051/e3sconf/20199704043
Published online 29 May 2019
  1. Standard PN-N-02211:2000 Geodezja – Geodezyjne wyznaczanie przemieszczeń. Geodesy – Displacements determination (In Polish) [Google Scholar]
  2. A. Jagielski, Podstawy geodezji inżynieryjnej, cz. 2. The basics of engineering geodesy, part 2 (GEODPIS, Kraków, 2016) (In Polish) [Google Scholar]
  3. K. Mąkolski, J. Kuchmister, Vertical displacement determination of the vertical buildings situated in the area of Grunwaldzki Square in Wroclaw. Reports on Geodesy, 1/90, 295-303 (2011) [Google Scholar]
  4. P. Gawronek, M. Makuch, Application of classical land surveying measurement methods for determining the vertical displacement of railway bridges. Civil and Environmental Engineering Reports, 27, Issue 4, 169-183 (2017), DOI: 10.1515/ceer-2017-0059 [CrossRef] [Google Scholar]
  5. K. Makowska, P. Kuras, Wykorzystanie pomiarów kątowo – liniowych do badania przemieszczeń zapór wodnych (Wyd. Polskiego Internetowego Informatora Geodezyjnego, Gdańsk, 2016) (In Polish) [Google Scholar]
  6. Q. M. Guedes, S. Irineu, Technical report: Shell dam horizontal displacement monitoring – comparative study using geodetic measurement, optical plumb and GPS technologies. Journal of Applied Geodesy, 3, Issue 4, 249-255 (2009), DOI: 10.1515/JAG.2009.025 [CrossRef] [Google Scholar]
  7. S. Erol, B. Erol, T. Ayan, A general review of the deformation monitoring techniques and a case study: analysing deformations using GPS/levelling. FIG Working Week, Athens (2004) [Google Scholar]
  8. Z. Muszyński, J. Rybak J, P. Kaczor, Accuracy Assessment of Semi-Automatic Measuring Techniques Applied to Displacement Control in Self-Balanced Pile Capacity Testing Appliance. Sensors, 18, Issue 11, (2018), DOI: 10.3390/s18114067 [Google Scholar]
  9. J. Armesto, C. Ordóñez, L. Alejano, P. Arias, Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology, 106, Issues 3–4, 271-277 (2008), DOI: 10.1016/j.geomorph.2008.11.005 [CrossRef] [Google Scholar]
  10. G. Wojciechowska, J. Luczak, Use of Close-Range Photogrammetry and UAV in Documentation of Architecture Monuments. E3S Web Conf. 71 (2018), DOI: 10.1051/e3sconf/20187100017 [CrossRef] [Google Scholar]
  11. Y. Srewil, Feasibility of use UAVs (drones) in construction, Institut für Bauinformatik, TU Dresden (2015) [Google Scholar]
  12. K. R, Dayal, I. M. Chauhan, UAV photogrammetry for feature extraction and mapping of corrugated industrial rooftops. The Int. Arch. of the Photogram., Remote Sensing and Spatial Inf. Sciences: XLII-4 (2018), DOI: 10.5194/isprs-archives-xlii-4-129-2018 [Google Scholar]
  13. T. R. Thiyab, The Use of Unmanned Aircraft in Aerial Photography in Engineering Geodesy, Journal of Babylon Univ./Eng. Sciences, 25, Issue 5, 1626-1635 (2017) [Google Scholar]
  14. G. Kuczyńska, Zaprojektowanie osnowy geodezyjnej do badania przemieszczeń pionowych zabytkowego obiektu sakralnego oraz wykonanie pomiaru wyjściowego. BSc Thesis, Politechnika Wrocławska (2019) (In Polish) [Google Scholar]
  15. A. Walicka, Zaprojektowanie i wykonanie pomiarów osnowy geodezyjnej służącej do skanowania laserowego zabytkowego obiektu sakralnego. BSc Thesis, Politechnika Wrocławska (2019) (In Polish) [Google Scholar]
  16. M. Biernat, A. K. Stachyra, Porównanie modeli 3D obiektu architektonicznego utworzonych na podstawie skaningu laserowego oraz niemetrycznych zdjęć cyfrowych. Thesis, Politechnika Wrocławska (2017) (In Polish) [Google Scholar]
  17. M. Stawska, Opracowanie dokumentacji architektoniczno-budowlanej zabytkowego obiektu na podstawie danych z naziemnego skaningu laserowego. BSc Thesis, Politechnika Wrocławska (2019) (In Polish) [Google Scholar]
  18. Z. Muszyński, Application of Selected Robust Estimation Methods for Calculating Vertical Displacements of Hydrotechnical Structures. Studia Geotechnica et Mechanica XXXII, No 1, 69-80 (2010), available: http://www.sgem.pwr.edu.pl/iss/2010/no1/art05_no1_2010.pdf [Google Scholar]
  19. Z. Muszyński, J. Rybak, Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures. Studia Geotechnica et Mechanica, 39, Issue 4, 45-57 (2017), DOI: 10.1515/sgem-2017-0036 [CrossRef] [Google Scholar]
  20. Z. Muszyński, W. Milczarek, Application of Terrestrial Laser Scanning to Study the Geometry of Slender Object. IOP Conf. Ser.: Earth Environ. Sci. 95 (2017) DOI: 10.1088/1755-1315/95/4/042069 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.