Open Access
Issue
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
Article Number 05042
Number of page(s) 11
Section Hydrotechnical Construction and Melioration
DOI https://doi.org/10.1051/e3sconf/20199705042
Published online 29 May 2019
  1. REN21 2017. Renewables Global Status Report. Renewable Energy Policy Network for the 21st Century, (2016) [Google Scholar]
  2. http://www.apie.com.ar/Boletines/boletin-27/oferta-hidro.html. [Google Scholar]
  3. V. Schnitzer, Micro hydro power, GTZ, Germany, pp.118 (2009) [Google Scholar]
  4. A. Ihrenberger, K. Lothar, Water wheel turbine for water power stations, Patent, US 6210113B1, USA, (2001) [Google Scholar]
  5. S. Slavchev, Waterwheel power generating device, Patent, US6534881B1, USA, (2003) [Google Scholar]
  6. V. Krizik, M. Slovakia, Water wheel motor, Patent, US20060245919A1, USA, (2006) [Google Scholar]
  7. G.A. Ibrahim, C.H. Haron, C.H. Azhari, Traditional Water Wheels as a Renewable Rural Energy, J. Power and Energy Engineering, 1, pp. 62-66 (2015) [Google Scholar]
  8. F. Weichbrodt, S. Dimke, J. Hadler, P. Fröhle, Großmaßstäbliche Modellversuche mit einemschwimmenden Energiewandler, Dresdner Wasserbaukolloquium Wasserkraft mehrWirkungsgrad mehrÖkologie mehrZukunft, pp.291-299 (2011) [Google Scholar]
  9. G. Müller,C. Wolter, The breastshot water wheel: design and model tests, Proc. ICE Eng. Sustain Ability, 157 (2004) 203–212 [Google Scholar]
  10. L. Sule, I.N.G. Wardana, R. Soenoko, S.W. Angled, Curved Blades of Deep-Water Wheel Efficiency, Australian Journal of Basic and Applied Sciences, 8 (2014) 186-192 [Google Scholar]
  11. Y. Yassi, Experimental Study of a High Speed Micro Waterwheel, Iranian Journal of Mechanical Engineering, 14 (2013) 33-47 [Google Scholar]
  12. L. Jasa, A. Priyadi, M.H. Purnomo, An Alternative Model of Overshot Waterwheel Based on a Tracking Nozzle Angle Technique for Hydropower Converter, International Journal of Renewable Energy Research, 4 (2014) [Google Scholar]
  13. M. Denny, The efficiency of overshot and undershot waterwheels, Eur. J. Phys. 25 (2004) 193–202 [CrossRef] [Google Scholar]
  14. G. Müller, K. Kauppert, Performance characteristics of water wheels, J. Hydraul. Res., 42 (2004) 451–460 [CrossRef] [Google Scholar]
  15. L. Jasa, A. Priyadi, M.H. Purnomo, An Alternative Model of Overshot Waterwheel Based on a Tracking Nozzle Angle Technique for Hydropower Converter, International Journal of Renewable Energy Research, 4 (2014) [Google Scholar]
  16. V.N. Yurenkov, V.М. Ivanov, G.О. Kleyn, А.А. Blinov, Т.Yu. Rodivilina, P.V. Ivanova, Calculations methods of waterwheel blade flow, BULLETIN AltSTU. I.I. Polzunova, 2 (2006) 143-150. [Google Scholar]
  17. M. Denny, The efficiency of overshot and undershot waterwheels, Eur. J. Phys. 25 (2004) 193–202 [CrossRef] [Google Scholar]
  18. G. Müller,K. Kauppert, Performance characteristics of water wheels, J. Hydraul. Res., 42 (2004) 451–460 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.