Open Access
Issue
E3S Web Conf.
Volume 100, 2019
11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2019
Article Number 00031
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/201910000031
Published online 10 June 2019
  1. D. J. Barta, K. D. Pickering, C. Meyer, S. Pensinger, L. Vega, M. Flynn, A. Jackson, R. Wheeler, A Biologically-Based Alternative Water Processor for Long Duration Space Missions (NASA Johnson Space Center; Houston, TX, United States, Report No. NASA/JSC-CN-33488, 2015) [Google Scholar]
  2. M. S. Anderson, M. K. Ewert, J. F. Keener, Life Support Baseline Values and Assumptions Document (National Aeronautics and Space Administration Washington, D.C. Report No. NASA/TP-2015-218570, 2018) [Google Scholar]
  3. W. Breś, A. Golcz, A. Komosa, E. Kozik, W. Tyksiński, Żywienie roślin ogrodniczych (Wydawnictwo Uniwersytetu Przyrodniczego, Poznań, 2016) [Google Scholar]
  4. A. Komosa, Aeroponiczna uprawa roślin ogrodniczych (X Ogólnopolskie Sympozjum Naukowe: Efektywność stosowania nawozów w uprawach ogrodniczych, Kraków, Poland, 17-18 June, 2004) [Google Scholar]
  5. WHO, Guidelines for the safe use of wastewater, excreta and greywater (Volume 4, WHO Press, Geneva, Switzerland, 2006) [Google Scholar]
  6. E. H. Schubert, R. A. Wynveen, P. D. Quattrone, Adv Space Res. 4, 279–288 (1984) [CrossRef] [PubMed] [Google Scholar]
  7. T. Wydeven, M. A. Golub, Generation rates and chemical compositions of waste streams in a typical crewed space habitat (National Aeronautics and Space Administration, Ames Research Center; Moffett Field, CA. Report No. NASA-TM-102799, 1990) [Google Scholar]
  8. D. L. Carter, Waste Water Characterization for the ISS Water Processor (SAE Technical Paper 981616, 28th International Conference on Environmental Systems, Society of Automotive Engineers, Warrendale, PA, 1998) [Google Scholar]
  9. J. Silverstein, G. M. Brion, R. Barkley, A. Dunham, C. Hurst, P. Todd, J. Schulz, Acta Astronaut. 33, 317–338 (1994) [Google Scholar]
  10. S. Lutts, J. M. Kinet, J. Bouharmont, J. Exp. Bot. 46, 12, 1843–1852 (1995) [CrossRef] [Google Scholar]
  11. K. Janiak, A. Jurga, W. Breś, J. Kuźma, Surfactant impact on lettuce aeroponic cultivation, [in preparation] (2019) [Google Scholar]
  12. S. Leoni, B. Pisanu, R. Grudina, A new system of tomato greenhouse cultivation: high density aeroponic system (HDAS) (In International Symposium on New Cultivation Systems in Greenhouse 361, 210-217 (1993) [Google Scholar]
  13. J. Osvald, N. Petrovic, J. Demsar, Acta Aliment. 30, 1, 53–61 (2001) [CrossRef] [Google Scholar]
  14. K. Yamazaki, Nutrient solution culture (Pak-kyo Co., Tokyo, Japan, 41, 1982) [Google Scholar]
  15. D. S. Domingues, H. W. Takahashi, C. A. Camara, S. L. Nixdorf, Comput. Electron. Agric, 84, 53–61 (2012) [CrossRef] [Google Scholar]
  16. E.A. Maier, R.D. Matthews, J.A. McDowell, R.R. Walden, B.A. Ahner, J. Environ. Qual., 32(4) (2003) 1356-1364. [CrossRef] [PubMed] [Google Scholar]
  17. H. M. Resh, Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower (CRC Press, 2016) [Google Scholar]
  18. J. He, P. T. Austin, S. K. Lee, J. Exp. Bot. 61, 14, 3959–3969 (2010) [CrossRef] [PubMed] [Google Scholar]
  19. H. Liu, C. Y. Yu, N. S. Manukovsky, V. S. Kovalev, Y. L. Gurevich, J. Wang, Adv. Space Res. 42, 6, 1080–1088 (2008) [CrossRef] [Google Scholar]
  20. Y. Tako, S. Tsuga, T. Tani, R. Arai, O. Komatsubara, M. Shinohara, Adv. Space Res. 41, 5, 714–724 (2008) [Google Scholar]
  21. R. M. Wheeler, C. L. Mackowiak, G. W. Stutte, N. C. Yorio, L. M. Ruffe, J. C. Sager, R. P. Prince, W. M. Knott, Adv. Space Res. 41, 5, 706–713 (2008) [CrossRef] [Google Scholar]
  22. F. Galangau, F. Daniel-Vedele, T. Moureaux, M. F. Dorbe, M. T. Leydecker, M. Caboche, Plant Physiol. 88, 2, 383–388 (1988) [CrossRef] [Google Scholar]
  23. K. Herdel, P. Schmidt, R. Feil, A. Mohr, U. Schurr, Plant Cell Environ. 24, 1, 41–52 (2001) [CrossRef] [Google Scholar]
  24. N. S. Mattson, E. D. Harwood, Effect of light regimen on yield and flavonoid content of warehouse grown aeroponic Eruca sativa (In VII International Symposium on Light in Horticultural Systems 956, 417-422, 2012) [Google Scholar]
  25. S. Y. Nam, H. S. Lee, S. Y. Soh, R. A. M. Cabahug, Flower Res. J. 24, 1–9 (2016) [CrossRef] [Google Scholar]
  26. Y. Sago, HortScience 51, 9, 1087-1091 (2016) [CrossRef] [Google Scholar]
  27. A. Mohammad, A. Moheman, (In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, Springer, Berlin, Heidelberg, 261-264, 2012) [Google Scholar]
  28. D. Bubenheim, K. Wignarajah, W. Berry, T. Wydeven, J. Am. Soc. Hortic Sci. 122, 6, 792–796 (1997) [CrossRef] [Google Scholar]
  29. A. A. Schneiter, J. F. Miller, Crop Sci. 21 901–903 (1981) [CrossRef] [Google Scholar]
  30. S. Lutts, J. M. Kinet, J. Bouharmont, J. Exp. Bot. 46, 12, 1843–1852 (1995) [CrossRef] [Google Scholar]
  31. A. A. Steiner, Soilless Culture (Proceedings of the IPI 1968 6th Colloquium of the Internacional Potash Institute, 324-341, Florence, Italy, 1968) [Google Scholar]
  32. L. Taiz, E. Zeiger, Plant Physiology (Sinauer Associates, Inc. Publishers. Sunderland, ISBN : 0878938311, Massachusetts, USA, 1998) [Google Scholar]
  33. L. I. Trejo-Téllez, F. C. Gómez-Merino, Nutrient solutions for hydroponic systems (In Hydroponics-A Standard Methodology for Plant Biological Researches. InTech, 2012) [Accessed online 28.01.2019] [Google Scholar]
  34. L. A. Zanao Junior, F. Á. Rodrigues, R. L. F. Fontes, G. H. Korndörfer, J. C. L. Neves, J. Phytopatho. 157, 2, 73-78 (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.