Open Access
E3S Web Conf.
Volume 110, 2019
International Science Conference SPbWOSCE-2018 “Business Technologies for Sustainable Urban Development”
Article Number 01004
Number of page(s) 11
Section Energy Efficiency in the Construction
Published online 09 August 2019
  1. W. A. Friess, K. Rakhshan, T. A. Hendawi, S. Tajerzadeh. Energy and Buildings. No. 44. Pp 26-32 (2012) [Google Scholar]
  2. W. Wang, Zh. Tian, Y. Ding. Energy and Buildings. No. 64. Pp. 218-223 (2013) [Google Scholar]
  3. A. Dodoo, L. Gustavsson, R. Sathre. Building energy-efficiency standards in a life cycle primary energy perspective. Energy and Buildings. No. 43. Issue 7. Pp. 1589-1597 (2011) [Google Scholar]
  4. Y. Cheng, J. Nin, N. Gao. Thermal comfort models: A review and numerical investigation. Building and Environment. No. 47. Pp. 13-22 (2012) [Google Scholar]
  5. G. H. Dos Santos, N. Mendes. International Journal of Heat and Mass Transfer. No. 52. Pp. 2390-2398 (2009) [Google Scholar]
  6. H. M. Kunzel, K. Kiessel. International Journal of Heat Mass Transfer. Vol. 40(1), 159—167 (1997) [CrossRef] [Google Scholar]
  7. SP 52.13330.2016 Natural and artificial lighting. Updated version of SNiP 23-05-95. [Google Scholar]
  8. Abaqus Documentation: Abaqus Analysis User's manual. [Google Scholar]
  9. F. Aggogeri, A. Borboni, R. Faglia, Reliability roadmap for mechatronic systems, Applied Mechanics and Materials, 373-375, pp. 130-133. (2013) DOI: 10.4028/ [CrossRef] [Google Scholar]
  10. YU. A. Tabunshchikov, A. L. Naumov. Energoeffektivnost' v stroitel'stve. Garmonizaciya otechestvennoj normativnoj bazy. AVOK: Ventilyaciya, otoplenie, kondicionirovanie vozduha, teplosnabzhenie i stroitel‘naya teplofizika. T. 6. No. 6. Pp. 4-9 (2012) [Google Scholar]
  11. V. K. Savin, N. V. Savina. Arhitektura i energoeffektivnost' zdanij. Gradostroitel'stvo. No. 1. Pp. 82-84 (2013) [Google Scholar]
  12. V. G. Gagarin, V. V. Kozlov. ZHilishchnoe stroitel'stvo. 8, 2-6 (2011) [Google Scholar]
  13. A. I. Anan'ev, A. A. Anan'ev. Teplozashchitnye svojstva i dolgovechnost‘ neprozrachnyh fasadnyh sistem zdanij. Vestnik MGSU. T.1. No. 3. Pp. 146-151 (2011) [Google Scholar]
  14. Yu. A. Matrosov, I. N. Butovsky, L. K. Norford, M. W. Opitz. Standards for Heating Energy Use in Russian Buildings: A Review and a Report of Recent Progress. Energy and Buildings. Vol. 25. No 3. Pp. 207—222. (1997) [Google Scholar]
  15. K. Gertis, K. Zedl'bauer. Povyshenie energoeffektivnosti shkol'nyh zdanij. Academia. Arhitektura i stroitel'stvo. No 3. Pp. 544-552 (2010) [Google Scholar]
  16. A. Borboni, F. Aggogeri, N. Pellegrini, R. Faglia, Innovative modular SMA actuator, Advanced Materials Research, 590, 405-410 (2012) DOI: 10.4028/ [Google Scholar]
  17. H. Orr, J. Wang, D. Fetsch, R. Dumont. Technical note: Airtightness of older-generation energy-efficient houses in Saskatoon. Journal of Building Physics. No. 36. Pp. 294-307 (2013) [Google Scholar]
  18. H. M. Kunzel, K. Kiessel. Calculation of Heat and Moisture Transfer in Exposed Building Components. International Journal of Heat Mass Transfer. No. 40 (1). Pp. 159-167 (1997) [CrossRef] [Google Scholar]
  19. J. Mlakar, J. Strancar. Temperature and Humidity Profiles in Passive-house Building Blocks. Building and Environment. No. 60. Pp. 185-193 (2013) [Google Scholar]
  20. R. Teodosiu. Integrated Moisture (Including Condensation) - Energy - Airflow Model within enclosures. Building and Environment. No. 61. Pp. 197-209 (2013) [Google Scholar]
  21. M. Carlini, S. Castellucci, S. Cocchi, E. Allegrini, M. Li. Italian Residential Buildings: Economic Assessment for Biomass Boilers Plants. Mathematical Problems in Engineering. (2013) [Google Scholar]
  22. T. Dwyer. A Review of Biomass Heating for UK Homes and Commercial Applications. International Journal of Low Carbon Technologies. No. 1. Pp. 329-335 (2006) [CrossRef] [Google Scholar]
  23. J. Las-Heras-Casas, L. M. Lopez-Ochoa, J. P. Paredes-Sanchez, L. M. Lopez-Gonzalez. Implementation of Biomass Boilers for Heating and Hot Water in Multi-Family Buildings in Spain: Energy, Environmental and Economic Assessment. Journal of Cleaner Production No. 176. Pp. 590-603 (2018) [Google Scholar]
  24. K. Ericsson, S. Werner, The Introduction and Expansion of Biomass Use in Swedish District Heating Systems. Biomass and Bioenergy. No. 94. Pp. 57-65 (2016) [CrossRef] [Google Scholar]
  25. I. Valios, Th. Tsoutsos. Design of Biomass District Heating Systems. 15th European Biomass Conference, Berlin, Germany, 7-11 May 2007. Pp. 1525-1535 (2007) [Google Scholar]
  26. N. Chatzistougianni, E. Giagozoglou, K. Sentzas, E. Katastergios, D. Tsiamitros, D. Stimoniaris, A. Stomoniaris, S. Maropoulos. Biomass District Heating Methodology and Pilot Installations for Public Buildings Groups. 20th Innovative Manufacturing Engineering and Energy Conference, Kozani, Greece. Pp. 633-640 (2016) [Google Scholar]
  27. N. Margaritis, D. Rakopoulos, E. Mylona, P. Grammelis. Introduction of Renewable Energy Sources in the District Heating System of Greece. International Journal of Sustainable Energy Planning and Management. No. 4. Pp. 43-56 (2014) [Google Scholar]
  28. B. Doracic, T. Novosel, T. Puksec, N. Duic. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat. Energies. 11. Pp. 575 (2018) [Google Scholar]
  29. H. Fang, J. Xia, K. Zhu, Y. Su, Y. Jiang. Industrial Waste Heat Utilization for Low Temperature District Heating. Energy Policy. No.62. Pp. 236-246 (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.