Open Access
Issue
E3S Web Conf.
Volume 110, 2019
International Science Conference SPbWOSCE-2018 “Business Technologies for Sustainable Urban Development”
Article Number 01052
Number of page(s) 13
Section Energy Efficiency in the Construction
DOI https://doi.org/10.1051/e3sconf/201911001052
Published online 09 August 2019
  1. The truth about the separate collection of SDW in St. Petersburg. The status of container sites for separate collection of SDW (Saint-petersburg, Greenpeace Russia, 2007) [Google Scholar]
  2. Justification of the choice of the optimal method of recovery of solid domestic waste in the cities of Russia. Federal Service for Supervision of Natural Resources (Moscow, 2012) [Google Scholar]
  3. Russian Federation. Laws. On production and consumption wastes [Electronic resource]: Federal Law of 24.06.1998 N 89-FZ (as amended on 12. 29.2015)ATP Consultant Plus [Google Scholar]
  4. A. S. Klinkov, P. S. Belyaev, V. G. Odnolko, M. V. Sokolov, P. V. Makeev, I. V. Shashkov, Recovery and processing of solid domestic waste: study guide, 188 (Tambov: TSTU publishing house, 2015) [Google Scholar]
  5. Regional program in the waste management field of production and consumption, including municipal solid waste, in the Arkhangelsk region: Approved by the Decree of the Government of the Arkhangelsk region of December 12, 556 pp. ATP Consultant Plus (2017) [Google Scholar]
  6. T. Thewys, T. Kuppens, Economics of willow pyrolysis after phytoextraction. Int. J. Phytoremediat, 561–583 (2008) [CrossRef] [Google Scholar]
  7. T. Voets, T. Kuppens, Economics of electricity and heat production by gasification or flash pyrolysis of short rotation coppice in Flanders (Belgium). Biomass Bioenergy (2011) [Google Scholar]
  8. M. M. Wright, D. E. Daugaard, J. A. Satrio, R. C. Brown, Techno-economic analysis of biomass fast pyrolys to transportation fuels. Fuel, 2–10 (2010) [CrossRef] [Google Scholar]
  9. M. L. Cottam, A. V. Bridgwater, Techno-economic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy, 267–273 (1994) [Google Scholar]
  10. C. E. Gregoire, R. L. Bain, Technoeconomic analysis of the production of biocrude from wood. Biomass Bioenergy 275–283 (1994) [Google Scholar]
  11. Y. Solantausta, A. Oasmaa, Fast Pyrolysis of Forestry Residues and Sawdust, Production and Fuel Oil Quality. In Proceedings of International Nordic Bioenergy Conference, Javaskyla, Frinland, September (2003) [Google Scholar]
  12. Z. Luo, S. Wang, Y. Liao, J. Zhou, Y. Gu, K. Cen, Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy, 455–462 (2004) [Google Scholar]
  13. M. Ringer, V. Putsche, J. Scahill, Large-Scale Pyrolysis Oil Production and Economic Analysis; Technical Report NREL/TP-510–37779; National Renewable Energy Laboratory: Cole Boulevard, CO, USA (2006) [Google Scholar]
  14. H. Mullaney, I. H. Farag, C. L. LaClaire, C. J. Barrett, Technical, Environmental and Economic Feasibility of Bio-Oil in New Hampshire’s North Country; Final Report; New Hampshire Industrial Research Center (NHIRC): Durham City, NH, USA, (2002) [Google Scholar]
  15. C. E. Gregoire, Technoeconomic Analysis of the Production of Biocrude from Wood; NREL/TP-430–5435; National Renewable Energy Laboratory: Golden, CO, USA (1992) [Google Scholar]
  16. M. N. Islam, F. N. Ani, Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bisour. Technol, 67–75 (2000) [CrossRef] [Google Scholar]
  17. A. V. Bridgwater, J. G. Brammer, Bio Energy Research Group, Chemical Engineering and Applied Chemistry, Aston University, Birmingham, B4 7ET, UK (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.