Open Access
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 01054
Number of page(s) 9
Section Advanced HVAC&R&S Technology
Published online 13 August 2019
  1. Y. Wang, J. Xu, Q. Liu, Y. Chen, H. Liu, Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid, Applied Thermal Engineering (2016) [Google Scholar]
  2. E. Z. Moya, Innovative Working Fluids For Parabolic Trough Collectors, CIEMAT, Plataforma Solar de Almería Tabernas (Almería), Spain (2017) [Google Scholar]
  3. M. Biencinto, L. González, E. Zarza, L. E. Díez, J. Muñoz and J. M. Val, Modeling And Simulation of A Loop of Parabolic Troughs Using Nitrogen As Workıng Fluid, Solarpaces (2012) [Google Scholar]
  4. C. Chang, A. Sciacovelli, Z. Wu, Xin Li, Y Li, M. Zhao, J Deng, Z. Wang, Y. Ding, Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid, Applied Energy, 220, 337–350 (2018) [Google Scholar]
  5. A. Bonk, S. Sau, N. Uranga, M. Hernaiz, Thomas Bauer, Advanced heat transfer fluids for direct molten salt line-focusing CSP plants, Progress in Energy and Combustion Science, 67, 69–87, (2018) [Google Scholar]
  6. S. E. Trabelsi, L. Qoaider, A. Guizani, Investigation of using molten salt as heat transfer fluid for dry cooled solar parabolic trough power plants under desert conditions, Energy Conversion and Management, 156 , 253–263 (2018) [Google Scholar]
  7. E. Bellos, C. Tzivanidis, K. A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors, Applied Thermal Engineering,(2016). [Google Scholar]
  8. A. Mwesigye, J. P. Meyer, Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios, Applied Energy, 193, 393–413 (2017) [Google Scholar]
  9. E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model, Renewable Energy, 97, 218–229 (2016) [Google Scholar]
  10. E. G. Roubaud, D. P. Osorio, C. Prieto, Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts, Renewable and Sustainable Energy Reviews, 80, 133–148 (2017) [CrossRef] [Google Scholar]
  11. [Google Scholar]
  12. Y. Wang, Q. Liu, J. Lei, H. Jin, A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid, Applied Thermal Engineering, 70, 462–476 (2014) [Google Scholar]
  13. T. Bauer, N. Pfleger, N. Breidenbach, M. Eck, D. Laing, S. Kaesche, Material aspects of Solar Salt for sensible heat storage, Applied Energy, 111, 1114–1119 (2013) [Google Scholar]
  14. J. M. Anton, M. Biencinto, E. Zarza, L.E. Díez, Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid, Applied Energy, 135, 373–381 (2014) [Google Scholar]
  15. K. Kadoya, N. Matsunaga, A. Nagashima, Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase, Journal of Physical and Chemical Reference Data, 14, 947 (1985) [Google Scholar]
  16. E. W. Lemmon, R. T Jacobsen, Steven G. Penoncello, D. G. Friend, Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 Mpa, J. Phys. Chem. Ref. Data, 29, (2000) [Google Scholar]
  17. E. Bellos, C. Tzivanidis, A detailed exergetic analysis of parabolic trough collectors, Energy Conversion and Management, 149, 275–292 (2017) [Google Scholar]
  18. O. Behar, A. Khellaf, K. Mohammedi, A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES), Energy Conversion and Management, 106, 268–281 (2015) [Google Scholar]
  19. R. Forristall, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, National Renewable Energy Laboratory, (2003) [Google Scholar]
  20. J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley and Sons, (2013) [Google Scholar]
  21. S. A. Kalogirou, A detailed thermal model of a parabolic trough collector receiver, Energy, 48, 298–306, (2012) [CrossRef] [Google Scholar]
  22. G. Coccia, G. D. Nicola, A. Hidalgo, Parabolic Trough Collector Prototypes for Low-Temperature Process Heat, Springer, (2016) [Google Scholar]
  23. A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future, Renewable and Sustainable Energy Reviews, 12, 593–661 (2008) [CrossRef] [Google Scholar]
  24. A. Suzuki, General theory of exergy-balance analysis and application to solar collectors, Energy, 13,153–160, (1988) [CrossRef] [Google Scholar]
  25. V. Madadi, T. Tavakoli, A. Rahimi, First and second thermodynamic law analyses applied to a solar dish collector, Non-Equilib. Thermodyn., 39 (4), 183–197 (2014) [Google Scholar]
  26. M. Chafie, M. F. Ben Aissa, A. Guizani, Energetic end exergetic performance of a parabolic trough collector receiver: An experimental study, Journal of Cleaner Production, (2017) [Google Scholar]
  27. R. Loni, E. Askari Asli-ardeh, B. Ghobadian, A.B. Kasaeian, S. Gorjian, Thermodynamic Analysis of a Solar Dish Receiver using Different Nanofluids, Energy, (2017) [Google Scholar]
  28. [Google Scholar]
  29. V. Dudley, G. Kolb, M. Sloan, D. Kearney, SEGS LS2 solar collector-test results, Report of Sandia National Laboratories, SAN94-1884, (1994) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.