Issue |
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 6 | |
Section | Energy | |
DOI | https://doi.org/10.1051/e3sconf/202132102016 | |
Published online | 11 November 2021 |
Contribution to the Parametric Study of the Performance of A Parabolic Trough Collector
1
Laghouat University, Process Engineering Laboratory, Laghouat -, 03000, Algeria
2
Laghouat University, Mechanical Engineering Laboratory, Laghouat -, 03000, Algeria
* Corresponding author: bouali-b@hotmail.com
This paper presents an analysis of the performance of a parabolic trough collector (PTC) according to some key operating parameters. The effects of the secondary reflector, the length and thickness of the absorber tube (receiver tube) and the flow rate of the heat transfer fluid (HTF) are investigated. The main objective is to determine an optimal operation, which improves the performance of a traditional PTC. The target variables are the temperature at the outlet of the tube, the amount of energy collected by the HTF and the efficiency of the system. The solar flux data concern the city of LAGHOUAT located in the south of Algeria. Four days in different seasons are considered. The optical analysis of the system is performed by using the open source SolTrace code. The output of this analysis is used as a boundary condition for the CFD solver. The conjugate heat transfer and the fluid flow through the absorber tube are simulated by using ANSYS-CFX solver. Water is considered as heat transfer fluids. The obtained results show that the use of a curved secondary reflector significantly improves the performance of the traditional PTC. As the thickness of the tube increases, the heat storage in the material increases, which increases the temperature at the exit of the tube and therefore the efficiency of the system. However, the length of the tube depends on the mass flow of the HTF and vice versa. To keep the efficiency constant by choosing another length, it is necessary to choose a mass flow rate proportional to the flow rate corresponding to the initial length.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.