Open Access
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 02020
Number of page(s) 7
Section Indoor Environment Quality and Others
Published online 13 August 2019
  1. S. Fournier, “The Removal Of Airborne Dust From Swine Housing By Electrostatic Precipitation”, M.Sc. Thesis, University of Alberta, (1992). [Google Scholar]
  2. A. Farnoud, “Electrostatic removal of diesel particulate matter”, M.Sc. Thesis, Southern Methodist Uni. (2008). [Google Scholar]
  3. N. Englert, “Fine particles and human health—a review of epidemiological studies”, Toxicology Letters, 149: 235–242. (2004). [CrossRef] [PubMed] [Google Scholar]
  4. G.Liu, M. Xiao, X. Zhang, C. Gal, X. Chen, L. Liu, S. Pan, J., Wu, L. Tang, D. Clements-Croome. “A review of air filtration technologies for sustainable and healthy building Ventilation” Sust. Cities and Soc. 32: 375-396. (2017). [CrossRef] [Google Scholar]
  5. X. Zhao, 11th International Conference on Electrostatic Precipitation, Hangzhou, Springer Press, 75-83. (2008). [Google Scholar]
  6. Z.Feng, Z.Long, J.Mo “Experimental and theoretical study of a novel electrostatic enhanced air filter (EEAF) for fine articles”, J. of Aerosol Science. 102: 41–54. (2016) [CrossRef] [Google Scholar]
  7. A. Jaworek, A. Marchewicz, A.T. Sobczyk, A.Krupa, T. Czech, “Two-stage electrostatic precipitators for the reduction of PM 2.5 particle emission”, Prog. In Energy and Comb. Science. 67: 203-233. (2018). [CrossRef] [Google Scholar]
  8. T. Wen, H. Wang, I. Krichtafovitch, A.V. Mamishev, “Novel electrodes of an electrostatic precipitator for air filtration”, J. of Electrostatics, 73: 117–124 (2015). [CrossRef] [Google Scholar]
  9. A.Swierczok, M.Jedrusik, “The collection efficiency of ESP model - Comparison of experimental results and calculations using Deutsch model”, J. of Electrostatics, 91 :41–47. (2018). [CrossRef] [Google Scholar]
  10. A.E.M. Atia, “Air cleaning systems for livestock buildings”, PhD. Thesis, Iowa State University, Dept. of Agricultural and Biosystems engineering (1995). [Google Scholar]
  11. A.Jaworek, A.Krupa, T.Czech, “Modern electrostatic devices and methods for exhaust gas cleaning: A brief review”, J. of Electrostatics, 65: 133–155. (2007). [CrossRef] [Google Scholar]
  12. D.Brocilo, “Electrode geometry effects on the collection efficiency of submicron and ultrafine dust particles in wire-plate electrostatic precipitators”, M.Sc. Thesis, McMaster University, (2003). [Google Scholar]
  13. R.B. Manuzon, “Electrostatic Precipitation Technologies for the Mitigation of Particulate Matter Emissions from Poultry Facilities” M.Sc. Thesis, The Ohio State University, (2012). [Google Scholar]
  14. S. Arif, D.J. Branken, R.C. Everson, H.W.J.P. Neomagus, L.A. Le Grange, A. Arif. “CFD modeling of particle charging and collection in electrostatic precipitators”,J.of Electrostatics, 84: 10–22 (2016). [CrossRef] [Google Scholar]
  15. C.W. Stone, “Economically optimal design of particulate air pollutant control equipment”, PhD. Thesis, University of Illinois at Urbana-Champaign, (1973). [Google Scholar]
  16. M.Maalmi, “Dust removal and collection techniques”, Current Environmental Issues and Challenges, Springer Press, 137-157 (2014). [Google Scholar]
  17. G.Y. Lin, T.M.Chen, C.J.Tsai, “A Modified Deutsch-Anderson Equation for Predicting the Nanoparticle Collection Efficiency of Electrostatic Precipitators”, Aerosol and Air Quality Research. 12: 697-706. (2012). [Google Scholar]
  18. B.H.Kim, K.C.Ahn, Y.S. Jang, “Electrostatic Precipitability of the Coal Fly-Ash by the Pilot Scale Test” KSME International Journal, 15: 602-612. (2001). [CrossRef] [Google Scholar]
  19. J.P.Reynolds, L.Theodore, J.Marino, “Calculating Collection Efficiencies for Electrostatic Precipitators” Jor. of the Air Pol. Control Ass. 25:6, 610-616. (1975). [CrossRef] [Google Scholar]
  20. T. Wen, I. Krichtafovitch, A.V.Mamishev, “The key energy performance of novel electrostatic precipitators”, J. of Building Eng. 2 :77–84. (2015). [CrossRef] [Google Scholar]
  21. T. Wen, I. Krichtafovitch, A.V.Mamishev, “Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-platecovered collecting electrodes”, J. of Aerosol Science, 79 :40–47. (2015). [CrossRef] [Google Scholar]
  22. T.Wen, “High-Efficiency Electrostatic Precipitators” Ph.D. Thesis, University of Washington, Department of Mechanical Engineering, (2015). [Google Scholar]
  23. Z. Tan, Y. Zhang, “A Review of Effects and Control Methods of Particulate Matter in Animal Indoor Environments” J. Atr&Waste Manage. Assoc. 54: 845-854. [Google Scholar]
  24. X.Xiang, Y.Wang, W.Chen, Electrostatic Precipitation, Springer Press, 87-90. (2008). [Google Scholar]
  25. A.Mizuno, “Electrostatic precipitation” IEEE Transactions on Dielectrics and Elec. Ins. 7: 615–624. (2000). [Google Scholar]
  26. R. Tsai, A.F. Mills, “A model of particle reentrainment in electrostatic precipitators” J. Aerosol Sci. 26: 227–239. (1995). [Google Scholar]
  27. T. Wen, I. Krichtafovitch, A.V.Mamishev, “Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-platecovered collecting electrodes”, J. of Aerosol Science, 95: 95–103. (2016). [CrossRef] [Google Scholar]
  28. K.J.Boelter, J.H. Davidson, “Ozone Generation by Indoor, Electrostatic Air Cleaners” Aerosol Science and Tech., 27: 689–708. (1997). [CrossRef] [Google Scholar]
  29. K.Adamiak, “Numerical models in simulating wireplate electrostatic precipitators: A review”, J.of Electrostatics, 71 :673–680. (2013). [CrossRef] [Google Scholar]
  30. H.Shen, W.Yu, H.Jia, Y.Kang, “Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes”, J. of Electrostatics, 95: 61–70. (2018). [CrossRef] [Google Scholar]
  31. Z.He, E.T.M.Dass, “Correlation of design parameters with performance for electrostatic Precipitator. Part I. 3D model development and validation”, App. Math. Modeling. 57: 656-669. (2018). [CrossRef] [Google Scholar]
  32. B.Guo, A. Yu, J. Guo, “Numerical Modelling of ESP for Design Optimization”, Procedia Engineering, 102: 1366-1372. (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.