Open Access
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 03044
Number of page(s) 7
Section High Energy Performance and Sustainable Buildings
Published online 13 August 2019
  1. [Google Scholar]
  2. G.M., Masters. Renewable and Efficient Electric Power Systems, ISBN 0-471-28060-7 (2004). [Google Scholar]
  3. N. Asim, K. Sopian, S. Ahmadi, K. Saeedfar, M.A.Alghoul, O. Saadatian, S.H. Zaidi, A review on the role of materials science in solar cells, Renewable and Sustainable Energy Reviews 16; (2012) 5834– 5847. [CrossRef] [Google Scholar]
  4. [Google Scholar]
  5. A.R. Jordeh. Parameter estimation of solar PV cells: A review, Renewable and Sustainable Energy Reviews 61; (2016), p. 354–371. [CrossRef] [Google Scholar]
  6. Bloomberg New Energy Finance. [Google Scholar]
  7. [Google Scholar]
  8. [Google Scholar]
  9. R.M. Swanson. A vision for crystalline silicon photovoltaics, Progress in Photovoltaics: Research and Applications 14; (2006), p. 443–453. [CrossRef] [Google Scholar]
  10. html. [Google Scholar]
  11. Y. Du, C.J. Fell, B. Duck, D. Chen, K. Liffman, Y. Zhang, M. Gu, Y. Zhu. Evaluation of photovoltaic panel temperature in realistic scenarios, Energy Conversion and Management 108; (2016), p. 60–67. [Google Scholar]
  12. S. Dubey, J.N. Sarvaiya, B Seshadri. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World: A Review, Energy Procedia 33; (2013), p. 311–321. [Google Scholar]
  13. V.J. Fesharaki, M. Dehghani, J.J. Fesharaki. The Effect of Temperature on Photovoltaic Cell Efficiency, Proceedings of the 1st International Conference on ETEC, Tehran, Iran; (2011). [Google Scholar]
  14. php. [Google Scholar]
  15. S.V. Hudisteanu, M. Pruteanu, T.D. Mateescu, M. Vasilache, Experimental investigation of temperature effects on the parameters of photovoltaic panels, Journal Environmental Engineering & Management Journal, Volume 16, Issue 7 (2017). [Google Scholar]
  16. E. Skoplaki, J.A. Palyvos. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, Solar Energy 83; (2009), p. 614–624. [CrossRef] [Google Scholar]
  17. E. Cuce, T. Bali, S.A. Sekucoglu. Effects of passive cooling on performance of silicon photovoltaic cells, International Journal of Low-Carbon Technologies; (2011), p. 1-10. [Google Scholar]
  18. C.G. Popovici, S.V. Hudișteanu, T.D. Mateescu, N.C. Cherecheș. Efficiency improvement of photovoltaic panels by using air cooled heat sinks, Energy Procedia 85; (2016), p. 425 – 432. [CrossRef] [Google Scholar]
  19. J.K. Tonui, Y. Tripanagnostopoulos. Improved PV/T solar collectors with heat extraction by forced or natural air circulation, Renewable Energy 32; (2007), p. 623–637. [CrossRef] [Google Scholar]
  20. V.S. Hudisteanu, T.D. Mateescu, N.C. Chereches, C.G. Popovici. Numerical study of air-cooling photovoltaic panels using heat sinks, Romanian Journal of Civil Engineering, Vol. 6, No. 1; (2015), p. 11-20. [Google Scholar]
  21. S.V. Hudișteanu, C.G. Popovici, T.D. Mateescu, N.- C. Cherecheș, Efficiency analysis of BIPV systems for different locations in Romania, Energy Procedia, Vol. 112, (2017), pp. 404 – 411. [CrossRef] [Google Scholar]
  22. B.K. Koyunbaba, Z. Yilmaz, K. Ulgen. An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall systems, Energy and Buildings 67; (2013), p. 680–688. [CrossRef] [Google Scholar]
  23. C.-G. Popovici, V.V. Cirlan, T.D. Mateescu, N.-C. Chereches, S.V. Hudisteanu, Influence of various angles of the venetian blind on the efficiency of a double skin façade, Energy Procedia 85, 416–424 (2016). [CrossRef] [Google Scholar]
  24. A. Chatzipanagi, F. Frontini, A. Virtuani. BIPVtemp: A demonstrative BIPV installation, Applied Energy 173; (2016), p. 1–12. [CrossRef] [Google Scholar]
  25. [Google Scholar]
  26. [Google Scholar]
  27. J.C. Tovarovic. Integrating photovoltaics into media facades, Annual Conference of Advanced Building Skins, Bressanone, Italy; (2014). [Google Scholar]
  28. Dye solar cell, Annual Conference of Advanced Building Skins, Bressanone, Italy; (2014). [Google Scholar]
  29. M.C. Jubayer. Numerical modelling of forced convective heat transfer from the inclined windward roof of a low-rise building with application to photovoltaic/thermal systems, Master Thesis, The University of Western Ontario London, Ontario, Canada; (2010). [Google Scholar]
  30. Z. Wang, F. Qiu, W. Yang, X. Zhao, S. Mei. Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires, Applied Energy 170; (2016), p. 314–323. [CrossRef] [Google Scholar]
  31. R.A. Agathokleous, S. Kalogirou. Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics, Renewable Energy 89; (2016), p.743–756. [Google Scholar]
  32. C.-G Popovici, S.V. Hudişteanu, T.D. Mateescu, N.- C. Cherecheş, (2016), Efficiency improvement of PV panels by using air cooled heat sinks, Energy Procedia, 85, 425-432. [CrossRef] [Google Scholar]
  33. E. Vuong, R. Kamel, A.S. Fung. Modelling and Simulation of BIPV in EnergyPlus and TRNSYS, Energy Procedia 78; (2015), p. 1883 – 1888. [CrossRef] [Google Scholar]
  34. V.S. Hudişteanu, T.D. Mateescu, C.G. Popovici. Five parameter model of photovoltaic panel implemented in MATLAB/Simulink, The Bulletin of the Polytechnic Institute of Jassy, Construction- Architecture Section, T. LXI (LXV), Fasc. 3; (2015), p. 93–102. [Google Scholar]
  35. M.P. Aparicio, J Pelegrí-Sebastiá, T Sogorb, V Llario. Modeling of Photovoltaic Cell Using Free Software Application for Training and Design Circuit in Photovoltaic Solar Energy, New Developments in Renewable Energy; (2013), p. 121-139. [Google Scholar]
  36. TRNSYS 16 Database. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.