Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 04063
Number of page(s) 8
Section High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy
DOI https://doi.org/10.1051/e3sconf/201911104063
Published online 13 August 2019
  1. European Commission. Statistical Office of the European Union., Shedding light on energy in the EU a guided tour of energy statistics (2018) [Google Scholar]
  2. Transport- Bygnings- og Boligministeriet, Bekendtgørelse om bygningsreglement 2018 (2018) [Google Scholar]
  3. S. D’Oca, T. Hong, and J. Langevin, The human dimensions of energy use in buildings: A review, Renew. Sustain. Energy Rev., 81, pp. 731–742 (2018) [CrossRef] [Google Scholar]
  4. P. Hoes, J. L. M. Hensen, M. G. L. C. Loomans, B. de Vries, and D. Bourgeois, User behavior in whole building simulation, Energy Build., 41, 3, pp. 295–302 (2009) [Google Scholar]
  5. R. Andersen, The influence of occupants’ behaviour on energy consumption investigated in 290 identical dwellings and in 35 apartments, Abstr. from 10th Int. Conf. Heal. Build., May, pp. 1–3 (2012) [Google Scholar]
  6. S. Andersen, R. K. Andersen, and B. W. Olesen, Influence of heat cost allocation on occupants’ control of indoor environment in 56 apartments: Studied with measurements, interviews and questionnaires, Build. Environ., 101, pp. 1–8 (2016) [CrossRef] [Google Scholar]
  7. H. N. Knudsen, K. E. Thomsen, and O. Mørck, Occupant experiences and satisfaction with new low-energy houses, Proc. Clima 2013 11th REHVA World Congr. Energy Effic. Smart Heal. Build. (2013) [Google Scholar]
  8. P. O. Fanger, Thermal Comfort-Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press (1970) [Google Scholar]
  9. J. F. Nicol and M. A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings, Energy Build., 34, 6, pp. 563–572 (2002) [Google Scholar]
  10. R. de Dear, J. Kim, and T. Parkinson, Residential adaptive comfort in a humid subtropical climate—Sydney Australia, Energy Build., 158, pp. 1296–1305 (2018) [Google Scholar]
  11. Y. Song, Y. Sun, S. Luo, Z. Tian, J. Hou, J. Kim, T. Parkinson, and R. de Dear, Residential adaptive comfort in a humid continental climate – Tianjin China, Energy Build., 170, pp. 115–121 (2018) [Google Scholar]
  12. L. Peeters, R. de Dear, J. Hensen, and W. D’haeseleer, Thermal comfort in residential buildings: Comfort values and scales for building energy simulation, Appl. Energy, 86, 5, pp. 772–780 (2009) [Google Scholar]
  13. J. Kim, S. Schiavon, and G. Brager, Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control, Build. Environ., 132, pp. 114–124 (2018) [Google Scholar]
  14. J. Farrokh, G. Ali, B.-G. Burcin, K. Tatiana, and O. Michael, Human-Building Interaction Framework for Personalized Thermal Comfort-Driven Systems in Office Buildings, J. Comput. Civ. Eng., 28, 1, pp. 2–16 (2014) [CrossRef] [Google Scholar]
  15. L. Jiang and R. Yao, Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm, Build. Environ., 99, pp. 98–106 (2016) [Google Scholar]
  16. A. Ghahramani, C. Tang, and B. Becerik-Gerber, An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling, Build. Environ., 92, pp. 86–96 (2015) [Google Scholar]
  17. B. Huchuk, W. O’Brien, and S. Sanner, A longitudinal study of thermostat behaviors based on climate, seasonal, and energy price considerations using connected thermostat data, Build. Environ., 139, pp. 199–210 (2018) [Google Scholar]
  18. D. P. Wyon and J. E. Ridenour, A covert field-intervention experiment to determine how heating controls that conserve energy affect thermal comfort, Indoor Air, 28, 5, pp. 763–767 (2018) [Google Scholar]
  19. C. Sandersen and K. Honoré, District heating flexibility – short term heat storage in buildings, pp. 1–30 (2018) [Google Scholar]
  20. B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam, H. Burroughs, and C. Jinks, Saturation in qualitative research: exploring its conceptualization and operationalization, Qual. Quant., 52, 4, pp. 1893–1907 (2018) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.