Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 05017
Number of page(s) 5
Section Information and Communication Technologies (ICT) for the Intelligent Building Management
DOI https://doi.org/10.1051/e3sconf/201911105017
Published online 13 August 2019
  1. United Nations Framework Convention on Climate Change (ed.) Adoption of the Paris Agreement, number FCCC/CP/2015/L.9/Rev.1 [Google Scholar]
  2. Millar, D., Tonolo, G., Ziebinska, U. Energy efficiency indicators – HIGHLIGHTS(International Energy Agency, 2016) [Google Scholar]
  3. Lenzen, M. Künstliche Intelligenz, Was sie kann & was uns erwartet(C.H. Beck, 2018) [Google Scholar]
  4. Adey, R., Sriram, D. Applications of artificial intelligence to engineering problems, report 5113597, (1987) [Google Scholar]
  5. Kalogirou, S. A. Renew. Sust. Ener. Rev., 5, 373–401 (2001) [CrossRef] [Google Scholar]
  6. Magnier, L., Haghighat, F. Build. Env., 45, 739–746 (2010) [CrossRef] [Google Scholar]
  7. Kusiak, A.,Xu, G. Energy, 42, 241–250 (2012) [CrossRef] [Google Scholar]
  8. Mohanraj, M., Jayaraj, S., Muraleedharan, C. Renew. Sust. Ener. Rev., 16, 1340–1358 (2012) [CrossRef] [Google Scholar]
  9. Nassif, N. Build. Sim., 7, 237–245 (2014) [Google Scholar]
  10. Ahmad, M. W., Mourshed, M., Yuce, B., Rezgui, Y. Build. Sim., Springer Nature, 9, 359–398 (2016) [Google Scholar]
  11. Afram, A., Janabi-Sharifi, F., Fung, A. S., Raahemifar, K. Ener. and Build., 141, 96–113 (2017) [CrossRef] [Google Scholar]
  12. Liang, J., Du, R. Int. J. Refrig., 30, 1104–1114 (2007) [Google Scholar]
  13. Najafi, M. Fault Detection and Diagnosis in Building HVAC Systems(University of California, Berkely, PhD thesis, 2010) [Google Scholar]
  14. West, S. R., Guo, Y., Wang, X. R., Wall, J. Automated Fault Detection and Diagnosis of HVAC Subsystems Using Statistical Machine Learning. Proceedings of Building Simulation. 12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November., 2011, 2659-2665 [Google Scholar]
  15. Narayanaswamy, B., Balaji, B., Gupta, R., Agarwal, Y. Data Driven Investigation of Faults in HVAC Systems with Model, Cluster and Compare (MCC). BuildSys’14, November 5–6, 2014, Memphis, TN, USA, 2014, 1-10 [Google Scholar]
  16. Du, Z., Fan, B., Jin, X., Chi, J. Build. Environ., 73, 1–11 (2014) [Google Scholar]
  17. Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A., Bitsuamlak, G. Ener. Build., 144, 191–206 (2017) [CrossRef] [Google Scholar]
  18. Hantsch, A., Mai, R. Einfluss instationärer Raumluftströmung auf die thermische Behaglichkeit im Aufenthaltsbereich. CEGA-Congress für Experten der TGA, 27.–28.11. 2018, Baden-Baden, 2018 [Google Scholar]
  19. Kuchling, H. Taschenbuch der Physik, 16th Ed. (Fachbuchverlag Leipzig, 1996) [Google Scholar]
  20. Aris, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics(Dover Publication Inc., 1990) [Google Scholar]
  21. Baehr, H. D. Thermodynamik(Springer-Verlag, 1992) [Google Scholar]
  22. Bowles, M. Machine Learning in Python(John Wiley & Sons Inc., 2015) [Google Scholar]
  23. Müller, A. C., Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists(O’Reilly Media Inc., 2016) [Google Scholar]
  24. McKinney, W. Datenanalyse mit Python(Dpunkt.Verlag GmbH, 2015) [Google Scholar]
  25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. J. Mach. Learn. R., 12, 2825–2830 (2011) [Google Scholar]
  26. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to build intelligent systems(O’Reilly Media Inc., 2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.