Open Access
Issue
E3S Web Conf.
Volume 112, 2019
8th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD 2019)
Article Number 03031
Number of page(s) 8
Section Rural Development
DOI https://doi.org/10.1051/e3sconf/201911203031
Published online 20 August 2019
  1. Baiano, A., 2014z. Recovery of bio-molecules from food wastes — a review. Molecules 19, 14821–14842 [CrossRef] [PubMed] [Google Scholar]
  2. Cesário, M.T. et al. (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N. Biotechnol. 31, 104–113 [CrossRef] [PubMed] [Google Scholar]
  3. Chong, P.S. et al. (2013) Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. Int. J. Hydrog. Energ. 38, 9592–9599 [CrossRef] [Google Scholar]
  4. Danu C. M., Nedeff V., Circular Economy in Romania within European context, Studies and Scientific Researches. Economics Edition, No 21, 2015, doi: http://dx.doi.org/10.29358/sceco.v0i21.321 [Google Scholar]
  5. Gholami, A., Mohkam, M., Rasoul-Amini, S., Ghasemi, Y., 2016. Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotechnol. 28, 59–74. [Google Scholar]
  6. Gupta, V.K., Nayak, A., Agarwal, S., 2015a. Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ. Eng. Res. 20, 1–18. [CrossRef] [Google Scholar]
  7. Gupta, V.K., Nayak, A., Bhushan, B., Agarwal, S., 2015b. A critical analysis on the efficiency of activated carbons from low cost precursors for heavy metals remediation. Crit. Rev. Environ. Sci. Technol. 45, 613–668. [Google Scholar]
  8. J. Gustavsson, C. Cederberg, U. Sonesson, Global Food Losses and Food Waste Swedish Institute for Food and Biotechnology (SIK), Gothenburg (2011) [Google Scholar]
  9. Hassan, S.A. et al. (2015) Various characteristics of multi-modi-fied rice husk silica-anchored Ni or Pt nanoparticles as swift catalytic systems in some petrochemical processes. J. Taiwan Inst. Chem. Eng., http://dx.doi.org/10.1016/j.jtice.2015.08.001 [Google Scholar]
  10. Irakli, M. et al. (2015) Evaluation of quality attributes, nutraceutical components and antioxidant potential of wheat bread substi-tuted with rice bran. J. Cereal Sci. 65, 74–80 [Google Scholar]
  11. Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26, 361–375. [Google Scholar]
  12. Kotay, S.M. and Das, D. (2008) Biohydrogen as a renewable energy resource – prospects and potentials. Int. J. Hydrog. Energ. 33, 258–263 [CrossRef] [Google Scholar]
  13. Li, X., Chen, Y., Zhao, S., Chen, H., Zheng, X., Luo, J., Liu, Y., 2015. Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res. 70, 148–157. [CrossRef] [PubMed] [Google Scholar]
  14. Liu, C.H. et al. (2013) Biohydrogen production by a novel inte-gration of dark fermentation and mixotrophic microalgae cultivation. Int. J. Hydrog. Energ. 38, 15807–15814 [CrossRef] [Google Scholar]
  15. Luo, Y. et al. (2015) Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale 7, 690–700 [CrossRef] [PubMed] [Google Scholar]
  16. Mussatto, S.I. et al. (2006) Brewers’ spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43, 1–14 [Google Scholar]
  17. Nandi, I. and Ghosh, M. (2015) Studies on functional and antioxi-dant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioactive Carbohydrates Dietary Fibre 5, 129–136 [CrossRef] [Google Scholar]
  18. A. Nayak, Brij Bhushanb, An overview of the recent trends on the waste valorization techniques for food wastes, Journal of Environmental Management 233 (2019) 352–370 [CrossRef] [PubMed] [Google Scholar]
  19. Nayak, A., Bhushan, B., Rodriguez-Turienzo, L., 2018b. Recovery of polyphenols onto porous carbons developed from exhausted grape pomace: a sustainable approach for the treatment of wine wastewaters. Water Res. 145, 741–756. [CrossRef] [PubMed] [Google Scholar]
  20. Nayak, A., Bhushan, B., Rosales, A., Rodriguez Turienzo, L., Cortina, J.L., 2018a. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: process intensification, optimization and study of kinetics. Food Bioprod. Process. 109, 74–85. [CrossRef] [Google Scholar]
  21. Nayak, A., Bhushan, B., Gupta, V., Sharma, P., 2017. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions. J. Colloid Interface Sci. 493, 228–240. [Google Scholar]
  22. Obruca, S. et al. (2015) Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q 29, 135–144 [Google Scholar]
  23. Ludovica Principato, Luca Ruini, Matteo Guidi, Luca Secondi, Adopting the circular economy approach on food loss and waste: The case of Italian pasta production, https://doi.org/10.1016/j.resconrec.2019.01.025 [Google Scholar]
  24. Rajeev Ravindran and Amit K. Jaiswal, Review Exploitation of Food Industry Waste for High-Value Products, Trends in Biotechnology, January 2016, Vol. 34, No. 1 [Google Scholar]
  25. M. Sajdakowska, J. Gebski, S. Zakowska-Biemans, M. Jezewska-Zychowicz, Willingness to eat bread with health benefits: habits, taste and health in bread choice, public health 167 (2019) 78-87 [CrossRef] [PubMed] [Google Scholar]
  26. Schieber, A., Stintzing, F.C., Carle, R., 2001. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol. 12, 401–413. [Google Scholar]
  27. Serea, C.P. and Barna, O. (2011) Phenolic content and antioxi-dant activity in milling fractions of oat. Cancer 7, 8 [Google Scholar]
  28. Sindhu, R. et al. (2013) Pentose-rich hydrolysate from acid pre-treated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 78, 67–72 [Google Scholar]
  29. Tan, T. et al. (2010) Current development of biorefinery in China. Biotechnol. Adv. 28, 543–555 [CrossRef] [PubMed] [Google Scholar]
  30. Mohammed Al-Thani, Al-Anoud Al-Thani, Nasser Al-Mahdi, Hefzi Al-Kareem, Darine Barakat, Walaa Al-Chetachi, Afaf Tawfik, and Hammad Akram, An Overview of Food Patterns and Diet Quality in Qatar: Findings from the National Household Income Expenditure Survey, Cureus 2017 May; 9 (5): e1249, doi: 10.7759/cureus.1249 [PubMed] [Google Scholar]
  31. Thomsen, A.B., Medina, C., Ahring, B.K., 2003. Biotechnology in ethanol production. In: Larsen, H., Kossman, J., Petersen, L.S. (Eds.), New and Emerging Bioenergy Technologies, vol. 2. Riso National Laboratory, Denmark, pp. 40–44. [Google Scholar]
  32. Van-Thuoc, D. et al. (2008) Utilization of agricultural residues for poly (3hydroxybutyrate) production by Halomonas boliviensis LC1. J. Appl. Microbiol. 104, 420–428 [Google Scholar]
  33. Venkata Mohan, S. and Venkateswar Reddy, M. (2013) Optimi-zation of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology. Bioresour. Technol. 128, 409–416 [Google Scholar]
  34. Zheng, Y. et al. (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreat-ment of wheat straw. Biotechnol. Biofuels 5, 50 [Google Scholar]
  35. Yang, X. et al. (2015) Current states and prospects of organic waste utilization for biorefineries. Renew. Sust. Energ. Rev. 49, 335–349 [CrossRef] [Google Scholar]
  36. Verspreet, J. et al. (2015) Purification of wheat grain fructans from wheat bran. J. Cereal Sci. 65, 57–59 [Google Scholar]
  37. Yu, J. and Stahl, H. (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour. Technol. 99, 8042–8048 [Google Scholar]
  38. Ingredients for a Circular Economy, Food Drink Europe, e-News, 2016 [Google Scholar]
  39. Circular Economy Package, Dec. 21, 2015, http://researchbriefings.parliament.uk/ResearchBriefing/Summary/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.