Open Access
Issue
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
Article Number 02010
Number of page(s) 6
Section Thermal and Electrical Hybrid Systems
DOI https://doi.org/10.1051/e3sconf/201911302010
Published online 21 August 2019
  1. N. Harun, D. Tucker, T. Adams, Open Loop and Closed Loop Performance of Solid Oxide Fuel Cell Turbine Hybrid Systems During Fuel Composition Changes, J. Eng. Gas. Turbines Power, 139 (6), 061702, (2017). [CrossRef] [Google Scholar]
  2. L. Larosa, M. L. Ferrari, M. Loredana, A. Massardo, SOFC/MGT Coupling: Different Options With Standard Boosters, ASME Paper GT2013-94072, (2013). [Google Scholar]
  3. T. Choudhary, Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle, Int. J. Hydrog. Energy, 42 (15), 10248–10263, (2017). [CrossRef] [Google Scholar]
  4. M.L. Ferrari, E. Liese, D. Tucker, L. Lawson, A. Traverso, A. Massardo, Transient modeling of the NETL hybrid fuel cell/gas turbine facility and experimental validation, J. Eng. Gas. Turbines Power, 129 (4), 1012–1019, (2007). [CrossRef] [Google Scholar]
  5. J. Chen, Y. Chen, H. Zhang, S. Weng, Effect of different operating strategies for a SOFC-GT hybrid system equipped with anode and cathode ejectors, Energy, 163, 1–14, (2018). [CrossRef] [Google Scholar]
  6. T. Kaneko, J. Brouwer, G. Samuelsen, Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system, J. Power Sources, 160 (1), 316–325, (2016). [Google Scholar]
  7. D. Mclarty, J. Brouwer, S. Samuelsen, Fuel cell–gas turbine hybrid system design part II: Dynamics and control, J. Power Sources, 254 (15), 126–136, (2014). [Google Scholar]
  8. M.L. Ferrari, A. Traverso, A. Massardo, Transient analysis of solid oxide fuel cell hybrids: part B-Anode Recirculation Model, ASME Paper GT2004-53716, (2004). [Google Scholar]
  9. L. Magistri, M. L. Ferrari, A. Traverso, P. Costamagna, A. Massardo, Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C—Whole-Cycle Model, ASME Paper GT2004-53845, (2004). [Google Scholar]
  10. F. Jurado, Modeling SOFC plants on the distribution system using identification algorithms, J. Power Sources, 129 (2), 205–215, (2004). [Google Scholar]
  11. X. Wu, X. Zhu, G. Cao, H. Tu, Predictive control of SOFC based on a GA-RBF neural network model, J. Power Sources, 179 (1), 232–239, (2008). [Google Scholar]
  12. H. Huo, Z. Zhong, X. Zhu, H. Tu, Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model, J. Power Sources, 175 (1), 441–446, (2008). [Google Scholar]
  13. X. Wu, X. Zhu, G. Cao, H. Tu, Nonlinear modeling of a SOFC stack based on ANFIS identification, Simul. Model. Pract. Theory, 16 (4), 399–409, (2008). [Google Scholar]
  14. J. Schmidhuber, Deep learning in neural networks: an overview, J. Neural Netw, 61, 85–117, (2015). [CrossRef] [PubMed] [Google Scholar]
  15. Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature, 521(7553), 436–444, (2015). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  16. J. Chen, K. Gao, M. Liang, H. Zhang, Performace Evaluation of a SOFC-GT Hybrid System with Ejectors for the Anode and Cathode Recirculations, J. Electrochem. Energy Convers. Storage, 16 (4), 041004, (2019). [CrossRef] [Google Scholar]
  17. J. Chen, H. Zhang, S. Weng, Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization-Least Squares Support Vector Regression, J J. Electrochem. Energy Convers. Storage, 14 (3), 031003, (2017). [CrossRef] [Google Scholar]
  18. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, ACM conference on knowledge discovery and data mining, 785–794, (2017). [Google Scholar]
  19. S. Hochreiter, J. Schmidhuber, Long Short-term Memory, Neural Computation, 9 (8), 1735–1780, (1997). [CrossRef] [PubMed] [Google Scholar]
  20. J. James, A. Lam, D. Hill, V. Li. Delay Aware Intelligent Transient Stability Assessment System, IEEE Access, 5, 17230–17239, (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.