Open Access
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
Article Number 02011
Number of page(s) 6
Section Thermal and Electrical Hybrid Systems
Published online 21 August 2019
  1. International Maritime Organization (IMO) (last access 07/01/19) [Google Scholar]
  2. F. Burel, R. Taccani, N. Zuliani, Improving sustainability of maritime transport through utilization of liquefied natural gas (LNG) for propulsion. Energy 2013;57:412–20. [CrossRef] [Google Scholar]
  3. C. Lin, Strategies for promoting biodiesel use in marine vessels. Mar Policy 2013;40(1):84–90. [Google Scholar]
  4. B. Curt, Marine transportation of LNG, presentation at the Intertanko conference March 29, 2004. [Google Scholar]
  5. A.B. Smith, Gas fuelled ships: fundamentals, benefits classification & operational issues. In: Proceedings of the first gas fuelled ships conference, Hamburg, Germany 2010. [Google Scholar]
  6. O. Schinas, M. Butler Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering Volume 122, 1 August 2016, Pages 84–96 [CrossRef] [Google Scholar]
  7. G.A. Livanos, G. Theotokatos., D.N. Pagonis, 2014. Techno-economic investigation of alternative propulsion plants for ferries and roro ships. Energy Conversion Management 79, 640–651. [CrossRef] [Google Scholar]
  8. K. Senary, A. Tawfik, E. Hegazy, A. Ali, Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations Alexandria Engineering Journal Volume 55, Issue 3, September 2016, Pages 1951–1960. [Google Scholar]
  9. D.V. Singh, E. Pedersen, A review of waste heat recovery technologies for maritime applications, Energy Conversion Management 111 (2016) 315–328. [CrossRef] [Google Scholar]
  10. G. Shu, Y. Liang, H. Wei, H. Tian, J. Zhao, L. Liu, A review of waste heat recovery on two-stroke IC engine aboard ships, Renew. Sustain. Energy Rev. 19 (2013) 385–401. [CrossRef] [Google Scholar]
  11. S. Frigo, G. Pasini, S. Marelli, et al.: Numerical evaluation of an electric turbo compound for SI engines’, SAE Technical Paper 2014-32–0013, (2014) [Google Scholar]
  12. G. Pasini, S. Frigo, S. Marelli, Numerical comparison of an electric turbo compound applied to a SI and a CI engine’. Proc. ASME ICEF2015, Houston, TX [Google Scholar]
  13. G. Pasini, G. Lutzemberger, S. Frigo et al.: ‘Evaluation of an electric turbo compound system for SI engines: a numerical approach’, Applied Energy, (2016), 162, pp. 527–540 [Google Scholar]
  14. A. Baccioli, M. Antonelli, U. Desideri, A. Grossi, Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications, Energy. 161 (2018) 456–469. [CrossRef] [Google Scholar]
  15. S. Nadaf, P. Gangavati, A review on waste heat recovery and utilization from diesel engines, Int. J. Adv. Eng. Technol. 5 (2014) 31–39. [Google Scholar]
  16. I. Szczygiel, Z. Bulinski Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut’s impact Energy 165 (2018) 999–1008 [Google Scholar]
  17. S. Kochunni, K. Chowdhury, LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration, Energy. 176 (2019) 753–764. [CrossRef] [Google Scholar]
  18. Wärtsilä 50DF Product Guide (last access 07/01/19) [Google Scholar]
  19. A. Baccioli, M. Antonelli, U. Desideri, Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery, Applied Energy. 199 (2017) 69–87. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.