Open Access
Issue
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
Article Number 03008
Number of page(s) 6
Section Energy Micropolygeneration and Harvesting
DOI https://doi.org/10.1051/e3sconf/201911303008
Published online 21 August 2019
  1. Tesla N., Turbine, U.S. Patent No. 1 061 206, 1913. [Google Scholar]
  2. Armstrong J.H., An Investigation of the Performance of a Modified Tesla Turbine, M.Sc. Thesis, Georgia Institute of Technology, 1952. [Google Scholar]
  3. Rice W., “An analytical and experimental investigation of multiple–disk turbines”, in: ASME Journal of Engineering for Power, 87, 29–36, 1965. [CrossRef] [Google Scholar]
  4. Hoya G.P., Guha A., “The design of a test rig and study of the performance and efficiency of a Tesla disc turbine”, in: Proc. IMechE, Part A: J. Power and Energy, 223, 451–465, 2009. [CrossRef] [Google Scholar]
  5. Sengupta S., Guha A., “Analytical and computational solutions for three–dimensional flow–field and relative pathlines for the rotating flow in a Tesla disc turbine”, in: Computers & Fluids, 88, 344–353, 2013. [Google Scholar]
  6. Carey V.P., “Assessment of Tesla Turbine Performance for Small Scale Rankine Combined Heat and Power Systems”, in: J. Eng. Gas Turbines Power, 132, 1–8; 2010. [CrossRef] [Google Scholar]
  7. Romanin V.D., Krishnan V.G., Carey V.P., Maharbiz M.M., “Experimental and analytical study of a sub–watt scale Tesla turbine performance”, in: Proceedings of IMECE 2012, Houston, 2012. [Google Scholar]
  8. Lampart P., Kosowski K., Piwowarski M., Jedrzejewski L., “Design analysis of Tesla micro–turbine operating on a low–boiling medium”, in: Polish Maritime Research, 28–33, 2009. [Google Scholar]
  9. Song J., Ren X.D., Li X.S., Gu C.W., Zhang M.M., “One–dimensional model analysis and performance assessment of Tesla turbine”, in: Appl. Therm. Eng., 546–554, 2018. [Google Scholar]
  10. Klein S.A., Nellis G.F., Mastering EES, f–Chart software, 2012. [Google Scholar]
  11. Manfrida G., Talluri L., “Fluid dynamics assessment of the Tesla turbine rotor”, in: Thermal Science, 23, 1–10, 2019. [CrossRef] [Google Scholar]
  12. Talluri L., Fiaschi D., Neri G., Ciappi L., “Design and optimization of a Tesla turbine for ORC applications”, in: Appl. Energy, 226, 300–319, 2018. [Google Scholar]
  13. Ciappi L., Fiaschi D., Niknam P.H., Talluri L., “Computational investigation of the flow inside a Tesla turbine rotor”, in: Energy, 173: 207–217, 2019. [CrossRef] [Google Scholar]
  14. Glassman A.J., Computer Program for Design Analysis of Radial–inflow Turbines, National Aeronautics and Space Administration, Technical report, 1976. [Google Scholar]
  15. Levy E.K., Wang X., Pan C., Romero C.E., Maya C.R., Use of hot supercritical CO2 produced from a geothermal reservoir to generate electric power in gas turbine power generation system, Journal of CO2 Utilization, 23, 20–28, 2018. [CrossRef] [Google Scholar]
  16. Capata R., Sciubba E., 2012. Use of modified Balje maps in the design of low Reynolds number turbocompressors, Proceedings of IMECE 2012, Houston, Texas, USA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.