Open Access
E3S Web Conf.
Volume 115, 2019
2019 The 2nd International Conference on Electrical Engineering and Green Energy (CEEGE 2019)
Article Number 01003
Number of page(s) 6
Section Electronical Engineering
Published online 02 September 2019
  1. Oustaloup, A., Sabatier, J., & Lanusse, P. (1999). From fractional robustness to CRONE control. Fractional Calculus and Applied Analysis, 2, 1–30 [Google Scholar]
  2. Podlubny, I. (1999). Fractional-order systems and PIλDμ controllers. IEEE Transactions on Automatic Control, 44, 208–214 [Google Scholar]
  3. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., & Feliu, V. (2010). Fractional order Systems and Controls: Fundamentals and Applications, London: Springer-Verlag [CrossRef] [Google Scholar]
  4. Muresan, C.I., Ionescu, C., Folea, S., De Keyser, R. (2015). Fractional Order Control of Unstable Processes: The Magnetic Levitation Study Case, Nonlinear Dynamics, Vol. 80, No. 4, 1761–1772 [Google Scholar]
  5. Ding, Y., Wang, Z., & Ye, H. (2012). Optimal Control of a Fractional-Order HIV-Immune System With Memory, IEEE Transactions on Control Systems Technology, 20, 763–769 [CrossRef] [Google Scholar]
  6. Luo, Y., Chen, Y.Q., Ahn, H., & Pi, Y. (2012). Fractional order periodic adaptive learning compensation for the state-dependent periodic disturbance, IEEE Transactions on Control Systems Technology, 20, 465–472 [CrossRef] [Google Scholar]
  7. De Keyser, R., Muresan, C.I., Ionescu, C. (2016), A Novel Auto-tuning Method for Fractional Order PI/PD Controllers, ISA Trans., Vol. 62, 268–275 [Google Scholar]
  8. Vinopraba, T., Sivakumaran, N., & Narayanan, S. (2011). IMC Based Fractional order PID Controller, IEEE International Conference on Industrial Technology (ICIT) [Google Scholar]
  9. Tavakoli-Kakhki, M., & Haeri, M. (2011). Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers. ISA Trans, 50, 432–442 [Google Scholar]
  10. Maâmar, B., & Rachid, M. (2014). IMC-PIDfractional-order-filter controllers design for integer order systems. ISA Trans, 53, 1620–1628 [Google Scholar]
  11. Valerio, D., & Sa da Costa, J. (2006). Tuning of fractional PID controllers with Ziegler–Nichols-type rules, Signal Processing, 86, 2771–2784 [Google Scholar]
  12. Vinopraba, T., Sivakumaran, N., Narayanan, S., & Radhakrishnan, T.K. (2012). Design of internal model control based fractional order PID controller. J Control Theory Appl., 10, 297–302 [CrossRef] [Google Scholar]
  13. Isfer, L.A.D., da Silva, G.S., Lenzi, M. K. & Lenzi, E.K. (2012). Generalization of internal model control loops using fractional calculus, Latin American Applied Research, 42 [Google Scholar]
  14. Sondhi, S., & Hote, Y.V. (2014). Fractional IMC design for fractional order gas turbine model, The 9th International Conference on Industrial and Information Systems (ICIIS), Dec. 15-17 2014 [Google Scholar]
  15. Muresan, C.I., Dutta, A., Dulf, E.H., Pinar, Z., Maxim, A., Ionescu, C.M. (2016), Tuning algorithms for fractional order internal model controllers for time delay processes, International Journal of Control, Vol. 89, No. 3, pp. 579–593 [Google Scholar]
  16. Li Z, Liu L, Dehghan S, et al. (2017), A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int J Contr; 90(6): 1165–81. [CrossRef] [Google Scholar]
  17. De Keyser, R., Muresan, C.I., Ionescu, C.M. (2018), An efficient algorithm for low-order discrete-time implementation of fractional order transfer functions, ISA Transactions, vol. 74, pp. 229–238 [CrossRef] [PubMed] [Google Scholar]
  18. Rivera, D.E., M. Morari and S. Skogestad (1986). Internal Model Control. 4. PID Controller Design, Ind. Eng. Chem. Proc. Des. Dev., 25, 252–265 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.