Open Access
Issue
E3S Web Conf.
Volume 115, 2019
2019 The 2nd International Conference on Electrical Engineering and Green Energy (CEEGE 2019)
Article Number 02001
Number of page(s) 8
Section Energy System
DOI https://doi.org/10.1051/e3sconf/201911502001
Published online 02 September 2019
  1. REN21, “Renewables Global Status Report 2015,” Tech. Rep., 2012. [Google Scholar]
  2. Energinet.dk, “Annual report 2015,” Denmark, 2015. [Google Scholar]
  3. REN21, “Renewables Global Status Report 2018,” Tech. Rep., 2018. [Google Scholar]
  4. Energinet.dk, “COBRAcable: interconnector to the Netherland,” Denmark, 2016. [Google Scholar]
  5. Energinet.dk, “Viking link: interconnector from Denmark to Great Britain,” Denmark, 2016. [Google Scholar]
  6. V. Sitnikov, D. Povh, and D. W. Retzmann, “Solutions for large Power System Interconnections,” in Proc. for Synchronous Operation of the East-West Interconnection in Europe conference, St. Petersburg, Sep. 17-19, 2003. [Google Scholar]
  7. P. Tielens and D. V. Hertem, “The relevance of inertia in power systems,” Renew. Sustain. Energy Rev., vol. 55, pp. 999–1009, Mar. 2016. [CrossRef] [Google Scholar]
  8. M. Federico, D. Florian, H. Gabriela, J. H. David, and V. Gregor, “The relevance of inertia in power systems,” in Proc. 20th Power Systems Computation Conference (PSCC), Dublin, Jul. 2018. [Google Scholar]
  9. A. Ulbig, T. S. Borsche, and G. Andersson, “Impact of low inertia on power system stability and operation,” presented at IFAC World Congress 2014, Capetown, South Africa, Dec. 2014 [Google Scholar]
  10. B. Parsons, M. Milligan, B. Zavadil, D. Brooks, B. Kirby, K. Dragoon, and J. Caldwell, “Grid impacts of wind power: A summary of recent studies in the United States,” Wind Energy, vol. 7, pp. 87–108, 2004. [CrossRef] [Google Scholar]
  11. J. C. Smith, M. R. Milligan, E. A. DeMeo, and B. Parsons, “Utility wind integration and operating impact state of the art,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 900–908, Aug. 2007. [Google Scholar]
  12. Synchronous Condensers Application in Low Inertia Systems (SCAPP), 2014. [Online]. Available: http://www.scapp.dk/ [Google Scholar]
  13. H. T. Nguyen, G. Y. Yang, A. H. Nielsen, and P. H. Jensen, “Combination of Synchronous Condenser and Synthetic Inertia for Frequency Stability Enhancement in Low Inertia Systems,” IEEE Transactions on Sustainable Energy, 2018. [PubMed] [Google Scholar]
  14. A. Moeini and I. Kamwa, “Analytical Concepts for Reactive Power Based Primary Frequency Control in Power Systems,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4217–4230, Nov. 2016. [CrossRef] [Google Scholar]
  15. L. Wang and M. Sa-Nguyen Thi, ”Stability Enhancement of a PMSG Based Offshore Wind Farm Fed to a Multi-Machine System Through an LCC-HVDC Link,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3327–3334, Aug. 2013. [CrossRef] [Google Scholar]
  16. Y. Pipelzadeh, N. R. Chaudhuri, B. Chaudhuri, and T. C. Green, ”Coordinated Control of Offshore Wind Farm and Onshore HVDC Converter for Effective Power Oscillation Damping,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 1860–1872, May 2017. [CrossRef] [Google Scholar]
  17. AEMO, “Black system South Australia 28 September 2016,” Tech. Rep., Mar. 2017. [Google Scholar]
  18. Nordic TSOs, Challenges and opportunities for the Nordic power system, pp. 1–66, 2016. [Google Scholar]
  19. NERC, 1200 MW fault induced solar photovoltaic resource interruption disturbance, Tech. Rep., Jun. 2017. [Online]. Available: http://www.nerc.com [Google Scholar]
  20. AEMO, “Frequency stability evaluation criteria for the synchronous zone of continental Europe,” Tech. Rep., Mar. 2016. [Google Scholar]
  21. ENTSO-E, “Oscillation Event 03.12.2017,” Mar. 2018. [Google Scholar]
  22. N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems”, IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944–953, Mar. 2014. [Google Scholar]
  23. Siemens, “The stable way synchronous condenser solutions,” 2014. [Google Scholar]
  24. S. Kalsi, D. Madura, and M. Ross, “Performance of Superconductor Dynamic Synchronous Condenser on an Electric Grid,” in Proc. 2005 IEEE PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, 2005, pp. 1–5. [Google Scholar]
  25. H. Abildgaard and Nan Qin, “Synchronous Condensers for reliable HVDC operation and bulk power transfer,” in Proc. 2015 IEEE Power Energy Society General Meeting, Denver, CO, Jul. 2015, pp. 1–9. [Google Scholar]
  26. I. Kamwa, J. Beland, G. Trudel, R. Grondin, C. Lafond, and D. McNabb, “Wide-area monitoring and control at Hydro-Quebec: past, present and future,” in Proc. 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., Jul. 2006. [Google Scholar]
  27. P. E. Marken, J. P. Skliutas, P. Y. Sung, K. S. Kim, H. M. Kim, L. H. Sailer, and R. R. Young, “New synchronous condensers for Jeju Island,” in Proc. 2012 IEEE Power & Energy Society General Meeting, San Diego, CA, Jul. 2012, pp. 1–6. [Google Scholar]
  28. P. E. Marken, M. Henderson, D. LaForest, J. Skliutas, J. Roedel, and T. Campbell, “Selection of Synchronous Condenser technology for the Granite Substation,” in Proc. IEEE PES T&D 2010, New Orleans, LA, USA, Apr. 2010, pp. 1–6. [Google Scholar]
  29. J. P. Skliutas, R. D. Aquila, J. M. Fogarty, R. Konopinski, P. Marken, C. Schartner, and G. Zhi, “Planning the future grid with synchronous condensers,” in Proc. CIGRE US National Committee 2013 Grid of the Future Symposium, 2013. [Google Scholar]
  30. H. T. Nguyen, C. Guerriero, G. Y. Yang, C. J. Boltonand, T. Rahman, and P. H. Jensen, “Talega synCon -Power grid support for renewable based systems,” in Proc. the Western Protective Relay Conference 2018, Washington, USA, Oct. 15-18, 2018, pp. 1–6. [Google Scholar]
  31. M. Nedd, C. Booth, and K. Bell, “Potential solutions to the challenges of low inertia power systems with a case study concerning synchronous condensers,” in Proc. 2017 52nd International Universities Power Engineering Conference (UPEC), Heraklion, Aug. 2017, pp. 1–6. [Google Scholar]
  32. H. Zhang, J. P. Hasler, N. Johansson, L. ngquist, and H. P. Nee, “Frequency response improvement with synchronous condenser and power electronics converters,” in Proc. 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Jun. 2017, pp. 1002–1007. [Google Scholar]
  33. H. T. Nguyen, G. Y. Yang, A. H. Nielsen, and P. H. Jensen, “Frequency stability improvement of low inertia systems using synchronous condensers,” in Proc. 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, Nov. 2016, pp. 650–655. [Google Scholar]
  34. Nahid-Al-Masood, R. Yan, T. K. Saha, and N. Modi, “Frequency response and its enhancement using synchronous condensers in presence of high wind penetration,” in Proc. 2015 IEEE Power & Energy Society General Meeting, Denver, CO, Jul. 2015, pp. 1–5. [Google Scholar]
  35. M. Kayiki and J. V. Milanovi, “Dynamic contribution of DFIG-based wind plants to system frequency disturbances,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 859-867, May 2009. [Google Scholar]
  36. J. V. D. Vyver, J. D. M. D. Kooning, B. Meersman, L. Vandevelde, and T. L. Vandoorn, “Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1129–1138, Mar. 2016. [Google Scholar]
  37. D. Pullaguram, S. Mishra, and N. Senroy, “Modeling and design of virtual inertia based rooftop PV,” in Proc. 2018 IEEMA Engineer Infinite Conference (eTechNxT), New Delhi, 2018, pp. 1–6. [Google Scholar]
  38. A. Hosseinipour and H. Hojabri, “Virtual inertia control of PV systems for dynamic performance and damping enhancement of DC microgrids with constant power loads,” IET Renewable Power Generation, vol. 12, no. 4, pp. 430–438, Mar. 2018. [CrossRef] [Google Scholar]
  39. F. Gonzalez-Longatt, E. Chikuni, and E. Rashayi, “Effects of the Synthetic Inertia from wind power on the total system inertia after a frequency disturbance,” in Proc. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, 2013, pp. 826–832. [Google Scholar]
  40. J. Ekanayake and N. Jenkins, “Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 800–802, Dec. 2004. [CrossRef] [Google Scholar]
  41. J. F. Conroy and R. Watson, “Frequency Response Capability of Full Converter Wind Turbine Generators in Comparison to Conventional Generation,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 649–656, May 2008. [CrossRef] [Google Scholar]
  42. M. Kayikci and J. V. Milanovic, “Dynamic Contribution of DFIG-Based Wind Plants to System Frequency Disturbances,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 859–867, May 2009. [Google Scholar]
  43. E. Loukarakis, I. Margaris, and P. Moutis, “Frequency control support and participation methods provided by wind generation,” in Proc. 2009 IEEE Electrical Power Energy Conference (EPEC), Montreal, QC, 2009, pp. 1–6. [Google Scholar]
  44. P. Moutis, E. Loukarakis, S. Papathanasiou, and N. D. Hatziargyriou, “Primary load-frequency control from pitch-controlled wind turbines,” in Proc. 2009 IEEE Bucharest PowerTech, Bucharest, 2009, pp. 1–7. [Google Scholar]
  45. P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, and Y. Liu, “Energy storage systems for advanced power applications,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1744–1756, Dec. 2001. [CrossRef] [Google Scholar]
  46. D. Bazargan, S. Filizadeh, and A. M. Gole, “Stability Analysis of Converter-Connected Battery Energy Storage Systems in the Grid,” IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1204–1212, Oct. 2014. [CrossRef] [Google Scholar]
  47. J. Zeng, B. Zhang, C. Mao, and Y. Wang, “Use of Battery Energy Storage System to Improve the Power Quality and Stability of Wind Farms,” in Proc. 2006 International Conference on Power System Technology, Chongqing, Oct. 2006, pp. 1–6. [Google Scholar]
  48. A. Saffarian and M. Sanaye-Pasand, “Enhancement of Power System Stability Using Adaptive Combinational Load Shedding Methods,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1010–1020, Aug. 2011. [CrossRef] [Google Scholar]
  49. P. Ajay-D-Vimal and R. M. Sudhakaran, “Optimal load shedding in power system strategies with voltage stability indicators,” Engineering, vol. 2, no. 1, pp. 12-21, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.