Open Access
E3S Web Conf.
Volume 120, 2019
2019 2nd International Conference on Green Energy and Environment Engineering (CGEEE 2019)
Article Number 03004
Number of page(s) 5
Section Ecological Management and Pollution Control
Published online 27 September 2019
  1. L. Bai, J. Wang, X. Ma, H. Lu. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health, 15, 780 (2018) [CrossRef] [Google Scholar]
  2. C. Bellinger, MS. Mohomed Jabbar, O. Zaiane, A. Osornio-Vargas. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 17, 907 (2017) [Google Scholar]
  3. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique. J. Artitif. Intell. Res. 16, 321–357 (2002) [Google Scholar]
  4. Y. Chu, Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, M. Ren, F. Liu, L. Tian, Z. Zhu, H. Xiang. A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth. Atmosphere 7, 129 (2016) [Google Scholar]
  5. N. Chuersuwan, S. Nimrat, S. Lekphet, T. Kerdkumrai. Levels and major sources of PM2.5 and PM10 in Bangkok Metropolitan Region. Environ. Int. 34, 671–677 (2008) [CrossRef] [PubMed] [Google Scholar]
  6. W.G. Cobourn, An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos. Environ. 44, 3015–3023 (2010) [Google Scholar]
  7. L. Curtis, W. Rea, P. Smith-Willis, E. Fenyves, Y. Pan. Adverse health effects of outdoor air pollutants. Environ. Int. 32, 815–830 (2006) [CrossRef] [PubMed] [Google Scholar]
  8. A.T. DeGaetano, O.M. Doherty. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos. Environ. 38, 1547–1558 (2004) [Google Scholar]
  9. M. Dong, D. Yang, Y. Kuang, D. He, S. Erdal, D. Kenski. PM2.5 concentration prediction using hidden semi-Markov model-based times series data mining. Expert Syst. Appl. 36, 9046–9055 (2009) [Google Scholar]
  10. H.K. Elminir. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 350, 225–237 (2005) [PubMed] [Google Scholar]
  11. X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin, J. Wang. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107, 118–128 (2015) [Google Scholar]
  12. Z. Haiming, S. Xiaoxiao. Study on Prediction of Atmospheric PM2.5 Based on RBF Neural Network. 2013 Fourth International Conference on Digital Manufacturing & Automation. IEEE. 1287–1289 (2013) [CrossRef] [Google Scholar]
  13. T. Kanabkaew. Prediction of hourly particulate matter concentrations in Chiangmai, Thailand using MODIS Aerosol optical depth and ground-based meteorological data. Environ. Asia 6, 65–70 (2013) [Google Scholar]
  14. I.G. McKendry. Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting. J. Air Waste Assoc. 52, 1096–1101 (2002) [CrossRef] [Google Scholar]
  15. D. Mishra, P. Goyal, A. Upadhyay. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India. Atmos. Environ. 102, 239–248 (2015) [Google Scholar]
  16. J.B. Ordieres, E.P. Vergara, R.S. Capuz, R.E. Salazar. Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 20, 547–559 (2005) [Google Scholar]
  17. P. Perez, A. Trier, J. Reyes. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos. Environ. 34, 1189–1196 (2000) [Google Scholar]
  18. C.A. Pope, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 287, 1132–1141 (2002) [CrossRef] [PubMed] [Google Scholar]
  19. W. Sun, H. Zhang, A. Palazoglu, A. Singh, W. Zhang, S. Liu. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 443, 93–103 (2013) [PubMed] [Google Scholar]
  20. D. Voukantsis, K. Karatzas, J. Kukkonen, T. Rasanen, A. Karppinen, M. Kolehmainen. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 409, 1266–1276 (2011) [PubMed] [Google Scholar]
  21. Q. Zhou, H. Jiang, J. Wang, J. Zhou. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 496, 264–274 (2014) [PubMed] [Google Scholar]
  22. P. Amphanthong and P. Busababodhin. Forecasting PM10 in the upper northern area of Thailand with grey system theory. Burapha Science Journal. 20, 15–24 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.