Open Access
Issue
E3S Web Conf.
Volume 122, 2019
2019 The 2nd International Conference on Renewable Energy and Environment Engineering (REEE 2019)
Article Number 02003
Number of page(s) 6
Section Solar Energy Utilization and Photovoltaic System
DOI https://doi.org/10.1051/e3sconf/201912202003
Published online 14 October 2019
  1. S. Zhao, Y. Fang, and Z. Wei, “Stochastic optimal dispatch of integrating concentrating solar power plants with wind farms”, Int. J. Electr. Power Energy Syst, vol.109, pp. 575–583, (2019). [CrossRef] [Google Scholar]
  2. S. Izquierdo, C. Montanes, C. Dopazo, and N. Fueyo, “Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage”, Energy Policy, vol.38, no. 10, pp. 6215–6221, (2010). [Google Scholar]
  3. K. Dallmer-Zerbe, M. Bucher, A. Ulbig, and G. Andersson, “Assessment of capacity factor and dispatch flexibility of concentrated solar power units”, in IEEE Grenoble Conference, (2013) , pp. 1–6. [Google Scholar]
  4. P. Denholm, and M. Hummon, “Simulating the value of concentrating solar power with thermal energy storage in a production cost model”, Contract, vol.715, no. 6, pp. 1–4, (2013). [Google Scholar]
  5. S. Madaeni, R. Sioshansi, and P. Denholm, “Estimating the capacity value of concentrating solar power plants with thermal energy storage: A case study of the southwestern United States”, IEEE Trans. Power Syst., vol.28, no. 2, pp. 1205–1215, (2013). [Google Scholar]
  6. G. He, Q. Chen, C. Kang, and Q. Xia, “Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets”, IEEE Trans. Sustain. Energy, vol.3, no.3, pp. 1245–1254, 7AD. [Google Scholar]
  7. R. Sioshansi, and P. Denholm, “The value of concentrating solar power and thermal energy storage”, IEEE Trans. Sustain.Energy, vol.1, no. 3, pp. 173–183, (2010). [Google Scholar]
  8. H. Ghaebi, T. Parikhani, H. Rostamzadeh, and B. Farhang, “Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling andz power (CCP) cycle by integrating of ejector refrigeration and”, Energy, vol.139, pp. 262–276, (2017). [CrossRef] [Google Scholar]
  9. H. Rostamzadeh, M. Ebadollahi, H. Ghaebi, M. Amidpour, and R. Kheiri, “Energy and exergy analysis of novel combined cooling and power (CCP) cycles”, Appl. Therm. Eng, vol.124, pp. 152–169, (2017). [Google Scholar]
  10. M. Pan, I. Bulatov, and R. Smith, “Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation”, Appl. Energy, vol.161, pp. 611–626, 2016. [Google Scholar]
  11. B. Balakin, O. Zhdaneev, A. Kosinska, and K. Kutsenko, “Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis”, Renew. Energy, vol.136, pp. 23–32, (2019). [Google Scholar]
  12. M. Dehaj, and M. Cells, “Experimental investigation of heat pipe solar collector using MgO nanofluids”, Sol. Energy Mater. Sol. Cells, vol.191, (2019). [Google Scholar]
  13. K. Farhanaet al., “Improvement in the performance of solar collectors with nanofluids-A state-of-the-art review”, Nano-Structures & Nano-Objects, vol.18, (2019). [Google Scholar]
  14. A. Kasaeian, A. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems”, Renew. Sustain. Energy Rev., vol.45, pp. 584–598, (2015). [CrossRef] [Google Scholar]
  15. S. Ghasemi, and A. Ranjbar, “Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study”, J. Mol. Liq., vol.222, pp. 159–166, (2016). [Google Scholar]
  16. E. Baysal, A.R. Dal, and N. §ahin, “Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems”, Int. J. Hydrogen Energy, vol.40, no. 44, pp. 15254–15266, Nov. (2015). [Google Scholar]
  17. A. Mwesigye, T. Bello-Ochende, and J.P. Meyer, “Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts”, Appl. Therm. Eng, vol.77, pp. 42–56, (2015). [Google Scholar]
  18. A. Mwesigye, T. Bello-Ochende, and J.P. Meyer, “Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts”, Appl. Energy, vol.136, pp. 989–1003, (2014). [Google Scholar]
  19. W. Fuqiang, L. Qingzhi, H. Huaizhi, and T. Jianyu, “Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics”, Appl. Energy, vol.164, pp. 411–424, (2016). [Google Scholar]
  20. W. Fuqiang, T. Zhexiang, G. Xiangtao, T. Jianyu, H. Huaizhi, and L. Bingxi, “Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex”, Energy, vol.114, pp. 275–292, (2016). [CrossRef] [Google Scholar]
  21. L.Z. Zhang, “Heat and mass transfer in a randomly packed hollow fiber membrane module: a fractal model approach”, Int. J. Heat Mass Transf., vol.54, pp. 13–14, (2011). [Google Scholar]
  22. T. Li, R. Wang, J. Kiplagat, and Y. Kang, “Performance analysis of an integrated energy storage and energy upgrade thermochemical solid- gas sorption system for seasonal storage of solar thermal”, Energy, vol.50, pp. 454–467, (2013). [CrossRef] [Google Scholar]
  23. X. Meng, X. Xia, C. Sun, and X. Hou, “Adjustment, error analysis and modular strategy for Space Solar Power Station”, Energy Convers. Manag, vol.85, pp. 292–301, (2014). [Google Scholar]
  24. X.J. Yang, D. Baleanu, and J.A. Tenreiro Machado, “Systems of Navier-Stokes equations on Cantor sets”, Math. Probl. Eng., (2013). [Google Scholar]
  25. G. Galdi, “An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems”, (2011). [Google Scholar]
  26. J. Ferziger, and M. Peric, Computational methods for fluid dynamics. (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.