Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01019
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/201912301019
Published online 22 October 2019
  1. Mineralni resursy Ukrainy. (2018). Kyiv, Ukraine: Derzhavne naukovo-vyrobnyche pidpryiemstvo “Derzhavnyi syformaciinyi heolohichnyi fond Ukrainy”. [Google Scholar]
  2. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121. [Google Scholar]
  3. Astafiev, D., Niedbalski, Z., Leschhom, F., & Tymoshenko, Ye. (2016). Technological, economic and ecological aspects of selective coal mining from ultra-thin seams in conditions of Ukraine. Mining of Mineral Deposits, 10(1), 83-88. https://doi.org/10.15407/mining10.01.083 [CrossRef] [Google Scholar]
  4. Snihur, V., Malashkevych, D., & Vvedenska, T. (2016). Tendencies of coal industry development in Ukraine. Mining of Mineral Deposits, 10(2), 1-8. https://doi:10.15407/mining10.02.001 [Google Scholar]
  5. Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-mechanical and chemical characteristics of amber. Solid State Phenomena, (277), 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80 [CrossRef] [Google Scholar]
  6. Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19 [Google Scholar]
  7. Pedchenko, L., Nyemchenko, K., Pedchenko, N., & Pedchenko, M. (2018). Use of alternative energy sources to improve the efficiency of natural gas hydrate technology for gas offshore deposits transportation. Mining of Mineral Deposits, 12(2), 122-131. https://doi.org/10.15407/mining12.02.122 [CrossRef] [Google Scholar]
  8. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  9. Melnikov, V., & Gennadinik, V. (2018). Cryodiversity: the world of cold on the earth and in the solar system. Philosophy and Cosmology, (20), 43-54. https://doi.org/10.29202/phil-cosm/20/4 [CrossRef] [Google Scholar]
  10. Bondarenko, V., Svietkina, O., Sai, K., & Klymenko, V. (2018). Investigation of the influence of polyelectrolytes hydrodynamic properties on the hydrateformation process. E3S Web of Conferences, (60), 00007. https://doi.org/10.1051/e3sconf/20186000007 [CrossRef] [EDP Sciences] [Google Scholar]
  11. Bondarenko, V., Kovalevska, I., Astafiev, D., Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, 277, 137-146. https://doi.org/10.4028/www.scientific.net/ssp.277.137 [CrossRef] [Google Scholar]
  12. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  13. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/ssp.277.221 [CrossRef] [Google Scholar]
  14. Thomas, H.R., Hosking, L.J., Sandford, R.J., Zagorščak, R., Chen, M., & An, N. (2019). Deep ground and energy: carbon sequestration and coal gasification. Proceedings of the 8th International Congress on Environmental Geotechnics, (1), 38-60. https://doi.org/10.1007/978-981-13-2221-1_2 [CrossRef] [Google Scholar]
  15. Smoliński, A., Howaniec, N., & Bąk, A. (2018). Utilization of energy crops and sewage sludge in the process of co-gasification for sustainable hydrogen production. Energies, 11(4), 809. https://doi.org/10.3390/en11040809 [Google Scholar]
  16. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6 [Google Scholar]
  17. Ge, S. (2017). Chemical mining technology for deep coal resources. Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 46(4), 679-691. [Google Scholar]
  18. Cempa, M., & Smoliński, A. (2017). Reactivity of chars gasified in a fixed bed reactor with the potential utilization of excess process heat. Journal of Sustainable Mining, 16(4), 156-161. https://doi.org/10.1016/j.jsm.2017.12.001 [CrossRef] [Google Scholar]
  19. Konovšek, D., Nadvežnik, J., & Medved, M. (2017). An overview of world history of underground coal gasification. AIP Conference Proceedings, (1866), 050004 https://doi.org/10.1063/1.4994528 [Google Scholar]
  20. Saptikov, I.M. (2018). History of UCG development in the USSR. Underground Coal Gasification and Combustion, 25-58. https://doi.org/10.1016/b978-0-08-100313-8.00003-7 [Google Scholar]
  21. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. https://doi.org/10.29227/IM-2018-02-36 [Google Scholar]
  22. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., & Smoliński, A. (2018). Mathematical and geomechanical model in physical and chemical processes of underground coal gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1 [CrossRef] [Google Scholar]
  23. Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. https://doi.org/10.29202/nvngu/2018-4/3 [CrossRef] [Google Scholar]
  24. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38. https://doi.org/10.33271/mining13.01.024 [CrossRef] [Google Scholar]
  25. Popovych, V., Kuzmenko, O., Voloshchyshyn, A., & Petlovanyi, M. (2018). Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, (60), 00010. https://doi:10.1051/e3sconf/20186000010 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Zhang, Q., Zhang, J., Huang, Y., & Ju, F. (2012). Backfilling technology and strata behaviors in fully mechanized coal mining working face. International Journal of Mining Science and Technology, 22(2), 151-157. https://doi:10.1016/j.ijmst.2011.08.003 [Google Scholar]
  27. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465-469. https://doi:10.1201/b17547-79 [Google Scholar]
  28. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Collection – Mining of Mineral Deposits 2013, 45-48. https://doi.org/10.1201/b16354-10 [Google Scholar]
  29. Perkins, G., du Toit, E., Cochrane, G., & Bollaert, G. (2016). Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(24), 3639-3646. https://doi.org/10.1080/15567036.2016.1188184 [CrossRef] [Google Scholar]
  30. Ma, T., Chen, P., & Zhao, J. (2016). Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(4), 365-395. https://doi.org/10.1007/s40948-016-0038-y [CrossRef] [Google Scholar]
  31. Bukowska, M., & Sygała, A. (2015). Deformation properties of sedimentary rocks in the process of underground coal gasification. Journal of Sustainable Mining, 14(3), 144-156. https://doi.org/10.1016/j.jsm.2015.11.003 [CrossRef] [Google Scholar]
  32. Orlov, G.V. (2018). The effects of rock deformation in underground coal gasification. Underground Coal Gasification and Combustion, 283-327. https://doi.org/10.1016/b978-0-08-100313-8.00010-4 [Google Scholar]
  33. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi:10.15407/mining12.02.068 [CrossRef] [Google Scholar]
  34. Li, H., Guo, G., & Zheng, N. (2018). Influence of coal types on overlying strata movement and deformation in underground coal gasification without shaft and prediction method of surface subsidence. Process Safety and Environmental Protection, (120), 302-312. https://doi.org/10.1016/j.psep.2018.09.023 [CrossRef] [Google Scholar]
  35. Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology, 28(6), 917-923. https://doi:10.1016/j.ijmst.2018.05.014 [Google Scholar]
  36. Gorova, A., Pavlychenko, A., Borysovs’ka, O., & Krups’ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Collection – Mining of Mineral Deposit 2013, 207-209. https://doi.org/10.1201/b16354-38 [Google Scholar]
  37. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8 [Google Scholar]
  38. Villegas, T., Nordlund, E., & Dahnér-Lindqvist, C. (2011). Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden. Engineering Geology, 121(1-2), 18-27. https://doi.org/10.1016/j.enggeo.2011.04.010 [Google Scholar]
  39. Aitkazinova, S., Soltabaeva, S., Kyrgizbaeva, G., Rysbekov, K., & Nurpeisova, M. (2016). Methodology of assessment and prediction of critical condition of natural-technical systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 2, 3-10. https://doi.org/10.5593/sgem2016/b22/s09.001 [Google Scholar]
  40. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197. https://doi.org/10.1016/j.acme.2018.01.012 [CrossRef] [Google Scholar]
  41. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, (35), 77-88. https://doi:10.4028/www.scientific.net/jera.35.77 [CrossRef] [Google Scholar]
  42. Bondarenko, V., Symanovych, H., Kicki, J., Barabash, M., & Salieiev, I. (2019). The influence of rigidity of the collapsed roof rocks in the mined-out space on the state of the preparatory mine workings. Mining of Mineral Deposits, 13(2), 27-33. https://doi.org/10.33271/mining13.02.027 [CrossRef] [Google Scholar]
  43. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245. https://doi:10.1201/b17547-43 [Google Scholar]
  44. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [Google Scholar]
  45. Stupnik, M.I., Kalinichenko, V.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2018). Determining the qualitative composition of the equivalent material for simulation of Kryvyi Rih iron ore basin rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 21-27. https://doi.org/10.29202/nvngu/2018-4/4 [CrossRef] [Google Scholar]
  46. Kovalevska, I., Zhuravkov, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2019). Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits, 13(3), 1-10. https://doi.org/10.33271/mining13.03.001 [CrossRef] [Google Scholar]
  47. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Colleсtion – Mining of Mineral Deposits 2013, 197-201. https://doi.org/10.1201/b16354-36 [Google Scholar]
  48. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Colleсtion – Mining of Mineral Deposits 2013, 159-163. https://doi.org/10.1201/b16354-28 [Google Scholar]
  49. Timoshchuk, V.I., & Sherstyuk, Ye.A. (2012). Geofiltration regularities in the areas loaded by gravitation in tailings and waste rock dumps. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30-35. [Google Scholar]
  50. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47. https://doi.org/10.1016/j.jsm.2018.03.004 [CrossRef] [Google Scholar]
  51. Shashenko, O.M., Hapieiev, S.M., Shapoval, V.G., & Khalymendyk, O.V. (2019). Analysis of calculation models while solving geomechanical problems in elastic approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 28-36. https://doi:10.29202/nvngu/2019-1/21 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.